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7.1 Normal forms of propositional formulas.

Any formula has an equivalent one in a normal form. In computer science, the two normal
forms we are interested in are conjunctive normal form (CNF) and disjunctive normal form
(DNF). The first one is a ∧ of ∨s, where ∨ is over variables or their negations (literals), the
second is a ∨ of ∧s of literals. A ∨ of literals is also called a clause, and a ∧ of literals a
term.

Example 1. • ¬p, x, s are examples of literals, whereas ¬¬p or (x ∨ y) is not a literal

• (x ∨ ¬y ∨ z), (¬p) are clauses,

• (x ∧ ¬y ∧ z), (¬p) are terms.

• (x ∨ ¬z ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y) is a CNF.

• (x ∧ z) ∨ (¬y ∧ z ∧ x) ∨ (¬x ∧ z) is a DNF.

• (x ∧ ¬(y ∨ z) ∨ u) is neither a CNF nor a DNF, but it is equivalent to the following
DNF: (x ∧ ¬y ∧ ¬z) ∨ u.

Why do we need CNFs and DNFs? Other than the fact that they are convenient normal
forms, they are very useful for constricting formulas given a truth table. In particular, DNFs
can be constructed from truth table by taking a disjunction (that is, ∨) of all satisfying
truth assignments and CNFs by taking a conjunction (∧) of negations of falsifying truth
assignments

Example 2. Recall the truth table for (p → q) ∧ q → p. Suppose that you are given just
the first two and the last column. How do you construct a formula that would have such a
truth table?
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Let us start by constructing a DNF formula. It would say, basically, “either the first line
satisfies me, or the second, or the last”. We write it as (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ ¬q).
Each term here fully describes one satisfying assignment, and the whole formula is true iff
(p→ q) ∧ q → p is. Now, to construct a formula in CNF we make it say “I am satisfied by
neither of the following assignments”. One way to write it is as a negation of a DNF formula
listing all falsifying assignments. In this example there is just one falsifying assignment,
so the formula becomes ¬(¬p ∧ q). By DeMorgan’s law, this is equivalent to (¬¬p ∨ ¬q),
and finally (p ∨ ¬q). If there were more than one falsifying assignment, here we would have
several of clauses with ∧ between them.

This construction also shows us that for any formula there is an equivalent CNF and an
equivalent DNF formula (these are the formulas constructed from the truth table of the
original formula). In particular, if the formula is a tautology, its DNF and CNF consist of
just (p ∨ ¬p) for an arbitrary p, and if it is a contradiction, of (p ∧ ¬p).

Let us do a larger example of constructing a CNF and DNF from a truth table.

A crucial point is that every truth assignment can be encoded as a propositional formula
which is true just on that assignment and false everywhere else. In order to make such a
formula, take ∧ of all variables that are true in the truth assignment and negations of all
variables that are false in that truth assignment. Since every variable is either true or false,
every variable will occur exactly once in this conjunction, either positively or negatively. For
example, a truth assignment p = T, q = F, r = T can be represented by a formula p∧¬q∧ r.
This formula will be true when p = T, q = F and r = T and false everywhere else.

This representation of truth assignments by formulas is our building block for constructing
DNFs and CNFs from a truth table. A DNF says that one of the truth assignments listed
is true, where the assignments listed are all the satisfying assignments of a formula. A CNF
is just a negation of a DNF formula listing falsifying truth assignments, simplified using
DeMorgan’s law to place negations on variables.

Let us look at a larger example for constructing CNFs and DNFs, equivalent to formulas
(given by truth tables). That is, the CNF,the DNF and original formula, although they look
quite different, share the same set of variables and are satisfied by exactly the same truth
assignments. Their truth tables are identical.

Example 3. Last time we used a truth table of a propositional formula (p → q) ∧ q → p
for constructing DNFs and CNFs. Now let us add one more variable: consider a formula
((p→ q) ∧ q → p) ∧ (¬q ∨ ¬r).
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r p q p→ q (p→ q) ∧ q (p → q) ∧ q → p ¬q ¬r (¬q ∨ ¬r) ((p → q) ∧ q → p) ∧ (¬q ∨ ¬r)

T T T T T T F F F F
T T F F F T T F T T
T F T T T F F F F F
T F F T F T T F T T
F T T T T T F T T T
F T F F F T T T T T
F F T T T F F T T F
F F F T F T T T T T

There are three F in the last column and five T, so our CNF will have 3 clauses (that is, it
will be the ∧ of three ∨), and our DNF will have 5 terms.

So, to construct a CNF for this formula, take

¬((r ∧ p ∧ q) ∨ (r ∧ ¬p ∧ q) ∨ (¬r ∧ ¬p ∧ q))

After simplification (applying DeMorgan’s law and double negation law), this becomes

(¬r ∨ ¬p ∨ ¬q) ∧ (¬r ∨ p ∨ ¬q) ∧ (r ∨ p ∨ ¬q)

You can check yourself that this formula is CNF and is indeed equivalent to
((p → q) ∧ q → p) ∧ (¬q ∨ ¬r); that is, it has the same truth table. A DNF for this
formula is:

(r ∧ p ∧ ¬q) ∨ (r ∧ ¬p ∧ ¬q) ∨ (¬r ∧ p ∧ q) ∨ (¬r ∧ p ∧ ¬q) ∨ (¬r ∧ ¬p ∧ ¬q)

Note that between the CNF and DNF all 8 truth assignments are mentioned: the falsifying
ones in the CNF and satisfying in DNF.

How large would such CNF or DNF be? Well, potentially nearly as large as the truth table
itself (say half of the entries are false, and half are true). But does it have to be so, or are
there always smaller formulas? If a column is filled with T and F pretty much randomly, it is
likely not to have a smaller description than the column itself, and so any formula encoding
it would have to be nearly as large as a truth table itself. In a few lectures we will start
talking about (classes of) Boolean functions, and describing them by sequences (one for each
number of variables) of truth tables. In that case, the question would be if such a Boolean
function can, as n → ∞, be described by formulas asymtotically smaller than their truth
table. In that case, although we know that a random such Boolean function would not have
small descriptions, and we also know functions for which there are no small CNF/DNF, the
general question of finding a natural example of a “hard” (that is, with no small formula)
Boolean function is an open problem.

Recall that a formula is in the CNF (conjunctive normal form) if it is a ∧ of ∨s of literals
(variables or their negation.)
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In this lecture we will talk about proving (or, actually, finding contradictions) statements
that are in this special form.

Definition 1 (Resolution rule). : Given two clauses of the form C∨x) and (D∨¬x), where
C and D are (possibly empty) disjunction of variables, can derive a (possibly empty) clause
(C ∨D).

That is,
(C ∨ x) ∧ (D ∨ ¬x)→ (C ∨D)

where C = (l1 ∨ · · · ∨ lk) and D = (l′1 . . . l
′
k′) for some literals. If there is a repeated literal,

only write it once.

Note that you may end up deriving an “empty” clause, that is, a ∨ of zero literals. But the
only way this could happen is when two clauses being resolved are (x) and (¬x). But x∧¬x
is always false, a contradiction. So deriving an empty clause proves that the original formula
was a contradiction (which is what we usually want to show).

Example 4. Consider the following statements:
p: it is sunny
q: the weather is good
r: I spend the day outside

Now consider the following argument:

p
p→ q
q → r
∴ r

We want to prove that this is a valid argument, that is, p, p→ q and q → r together imply
r (this in general is called a transitivity law). Resolution proof method allows us to find
contradictions: so we represent this problem as a contradiction p ∧ (p→ q) ∧ (q → r) ∧ ¬r.
Note that here again we are using the fact that the negation of an implication (in this case,
premises imply the conclusion) is a conjunction of premises and negation of the conclusion.

Resolution works with CNF formula, so the first step is to convert the formula above into
CNF. In this case, it is very easy: just apply the definition of implication to the second and
third clause to obtain p ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r.
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p (¬q ∨ r) ¬r(¬p ∨ q)

(¬p ∨ r)q

¬p

()

Puzzle 6. Prove that in a big city like Toronto with more than a million people there would
be at least two people with the same number of hairs on their heads. Assume that the
number of hairs on somebody’s head cannot be more than 300, 000.

24



Chapter 8

8.1 Resolution.

Recall that a formula is in the CNF (conjunctive normal form) if it is a ∧ of ∨s of literals
(variables or their negation.)

In this lecture we will talk about proving (or, actually, finding contradictions) statements
that are in this special form.

Definition 1 (Resolution rule). : Given two clauses of the form (C ∨ x) and (D ∨ ¬x),
where C and D are (possibly empty) disjunction of variables, can derive a (possibly empty)
clause (C ∨D).

That is,
(C ∨ x) ∧ (D ∨ ¬x)→ (C ∨D)

where C = (l1 ∨ · · · ∨ lk) and D = (l′1 . . . l
′
k′) for some literals. If there is a repeated literal,

only write it once.

Note that you may end up deriving an “empty” clause, that is, a ∨ of zero literals. But the
only way this could happen is when two clauses being resolved are (x) and (¬x). But x∧¬x
is always false, a contradiction. So deriving an empty clause proves that the original formula
was a contradiction (which is what we usually want to show).

Example 1. Consider the following statements:
p: it is sunny
q: the weather is good
r: I spend the day outside

Now consider the following argument:

p
p→ q
q → r
∴ r
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We want to prove that this is a valid argument, that is, p, p→ q and q → r together imply
r (this in general is called a transitivity law). Resolution proof method allows us to find
contradictions: so we represent this problem as a contradiction p ∧ (p→ q) ∧ (q → r) ∧ ¬r.
Note that here again we are using the fact that the negation of an implication (in this case,
premises imply the conclusion) is a conjunction of premises and negation of the conclusion.

Resolution works with CNF formula, so the first step is to convert the formula above into
CNF. In this case, it is very easy: just apply the definition of implication to the second and
third clause to obtain p ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r.
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For comparison, you can also prove this using rules of inference such as Modus Ponens. That
allows you to derive q from the first two lines (p and p→ q give q), and then derive r from
q and q → r.

Example 2. Let’s look at another example. Now there are only two variables, and the four
clauses contain all possible combinations (so the formula is a contradiction) (x ∨ y) ∧ (¬x ∨
y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y). You can easily see that any truth assignment to x and y falsifies
one clause.
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Resolution proof system is very powerful in that given any formula in CNF form it can check
whether it is a contradiction. However, resolution is not very efficient. Although it is much
more efficient in practice than using truth tables (for example, the (x1 ∧ (x1 → x2) ∧ (x2 →
x3) ∧ · · · ∧ (xn1 → xn) ∧ ¬xn can be done by a resolution proof system in n steps, whereas
the truth table would have 2n lines), there are examples of problems on which resolution
proof system has to explore all possibilities, and so is similar to the truth table method in
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efficiency. The most prominent such example is the PigeonHole Principle, which says that
it is impossible to put n + 1 element (pigeon) into n places (holes) without two elements
getting into the same place. You needed to use this principle, this kind of counting reasoning
to solve the last lecture puzzle.

The resolution is still the most popular method of programming automated proof systems
because if its clarity and simplicity. However, when working with or programming such a
system keep in mind that resolution “can’t count”.

At this point a natural question is: how can we use resolution to deal with general propo-
sitional formulas, that is, ones not in CNF form. Of course, we could create a truth table
and write a corresponding CNF formula, but if we have a truth table then we can just test
whether a formula is a contradiction by checking if all entries in the last column are Fs.
Another idea is to manipulate the formula using logic identities until it becomes a CNF.
This is possible, but unfortunately can result in a very large (size comparable to the truth
table) formula, especially when converting a DNF into a CNF (think of converting a formula
(x1 ∧ y1) ∨ (x2 ∧ y2) . . . (xn ∧ yn) into a CNF: you will end up with 2n clauses on n variables
each, one for every combination of Xs and Ys).

A different idea is to add new variables in such a way that the new formula is a contradiction
if and only if the original one was a contradiction. Here is one way of doing it.

1) Assign a new variable to every binary connector (∧,∨,→,↔) in the formula (starting
from the outermost connector, operation to be done last). For example, if the original
formula is ((x1 → x2)∨¬((¬x1 ↔ x3)∨x4))∧¬x2, then assign variable y1 to outermost
∧ connector,then the variable y2 to the ∨ before x4 and so on (think of writing a parse
tree of the formula and assigning y1 to the top, y2 and (possibly) y3 to its children,
etc).

2) Next, write the conditions describing the new variables: for example, if our y6 was
assigned to↔ in ¬x1 ↔ x3, then we need the condition (y6 ↔ (¬x1 ↔ x3)) which says
that y6 is true if and only if the expression (¬x1 ↔ x3) is true. The continue writing
similar expressions for other yis, using other yi variables to denote subformulas (for
example, the top ∧ denoted by y1 gets (y1 ↔ (y2 ∧ ¬x2)). Finally, add clause (y1) to
the formula which will mean that the whole original formula is true.

3) We are almost done: our formula is a conjunction of small parts; most importantly,
each small part (yi ↔ (. . . )) only involves three variables (for example, y1, y2 and x2 in
definition of y1, or y2↔ (y3∨¬y4) for y3). Three variables give us a small enough truth
table (8 lines), that we can write a CNF for this small table with just 7 or less clauses,
each with at most 3 variables.. So the size of the new formula becomes approximately
the number of logical connectives (times a constant).

4) The resulting formula is a CNF, and although it has many more variables, it is a
contradiction if and only if the original formula was.
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8.2 Complete set of connectives

From what we have done it is easy to see that any possible truth table (we will start saying
“boolean function” soon) can be represented by a formula written with just ∧,∨ and ¬.
Such set of connectives is called complete.

A stronger result tells us that even ∨ is not necessary in this set (homework exercise). But
¬ is necessary, because every formula without ¬ is true when all of its variables are set to
true. So contradiction cannot be described by such a formula, and any truth table with a 0
in the last column when all of its inputs are true cannot be represented by a formula using
only ∨ and ∧.

We have seen that there are two connectives that allow us to construct formulas representing
all possible truth tables. Is there a single connective that can be used to construct formulas
with all possible truth tables? The answer is yes, and such connective is called NAND
(stands for “not-and”) in digital circuit design, or Sheffer’s stroke (written as |). It is defined
so p|q is false when both p and q are true, and true otherwise.

p q p|q
1 1 0
1 0 1
0 1 1
0 0 1

You can see here that it has values exactly opposite of the values
of p∧ q, hence the name NAND. To show that it is complete, let
us look at how to simulate ¬ and ∧ with it. Once we have both
¬ and ∧, we can rewrite any formula to an equivalent one which
only uses | as a connective using ideas from the problem in your
homework assignment.

To show how to represent ¬p, note that the first row of the truth table has 0 for the value
of the Sheffer’s stoke, and the last row has a 1. So ¬p ⇐⇒ p|p. Similarly, p ∧ q ⇐⇒
¬(p|q) ⇐⇒ (p|q)|(p|q), since Sheffer’s stroke is the negation of ∧ and we just showed how
to do ¬.
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