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9.1 Predicate logic

Sometimes we encounter sentences that only have a truth value depending on some param-
eter. For example, Even(x) which states that the number x is even can be true or false
depending on the actual value of x. That is, Even(5) is false, and Even(10) is true.

It is convenient to think of predicates as propositions with parameters. Here, parameters
can be numbers, items, etc and there can be infinitely many possibilities for a parameter
value. For example, x2 > x is a predicate with an argument x, where we think of x as a
number. Another predicate Parent(x, y) could state that x is a parent of y. Here, it makes
sense to think of x and y as people, or at least living creatures. Truth values of a predicate
are defined for a given assignment of variables. For example, if x = 2, then x2 > x is true,
and if x = 0.5, then x2 > x is false. We call a set of possible objects from which the values
of a predicate can come from a domain of a predicate.

So what is the relation between a predicate, for example Parent(x, y), and a relation Parent?
A predicate is true iff the corresponding tuple of values is in the relation. For example,
Parent(John,Mary) is true if John is a parent of Mary, and the pair (John, Mary) is in the
relation Parent. Usually we will use the notation P (x, y, z) to mean a predicate, and just
P to denote a set (relation); however sometimes I will abuse the notation and mix up these
two concepts (especially when talking about databases).

9.2 Quantifiers

Without fixing the values of arguments of a predicate it is not possible to say if the predicate
is true or false. That is, unless we want to say that the predicate is false for all possible values
of its arguments (in the domain of this predicate). Here, we need to pay careful attention to
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what we mean by all possible values: x2 ≥ x is true for and it is false for some rational and
real numbers such as 0.5.

Quantifiers are the notational device that allows us to talk about all possible values of
arguments and make sentences with truth values out of predicates.

Definition 1. A formula ∀x A(x), where A(x) is a formula containing predicates, is true
(on the domain of predicates) if is is true on every value of x from the domain. Here, ∀ is
called a universal quantifier, usually pronounced as “for all ...”.

For example, ∀x x2 ≥ x states that for every element from the domain the square of that
element is greater than the element itself. This formula now has a truth value, provided we
know the domain from which x comes from. If the domain is Z, then the formula is true, and
if the domain is Q, then it is false. Often the domain is written explicitly: ∀x ∈ Z x2 ≥ x,
which is a shortcut for ∀x (x ∈ Z → x2 ≥ x).

When we want to say that something is not true everywhere, all we need to do is to give a
counterexample. E.g., to show that for Q it is not true that ∀x x2 ≥ x it is enough to give
one value on which x2 ≥ x does not hold such as x = 0.5. We denote this with the second
type of quantifiers, an existential quantifier.

Definition 2. A formula ∃x A(x), where A(x) is a formula containing predicates, is true
(on the domain of predicates) if is is true on some value of x from the domain. Here, ∃ is
called a existential quantifier, usually pronounced as “exists ...”.

When doing boolean operations on formulas containing quantifiers, always remember that
universal and existential quantifiers are opposites of each other. So,

¬(∀x A(x)) ⇐⇒ ∃x ¬A(x) ¬(∃x A(x)) ⇐⇒ ∀x ¬A(x)

Now that we have this notation we can define what kinds of formulas we can construct using
this language, the first-order formulas.

Definition 3. A predicate is a first-order formula (possibly with free variables). A ∧,∨,¬
of a first-order formula is a first-order formula. If a formula A(x) has a free variable (that
is, a variable x that occurs in some predicates but does not occur under quantifiers such as
∀x or ∃x), then ∀x A(x) and ∃x A(x) are also first-order formulas.

Note that this definition is very similar to the definition of propositional formulas except
here there are predicates instead of propositions and there are quantifiers.

Lets look at some examples of first-order formulas using the Parent(x, y) relation, saying
that x is a parent of y.
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• ∃y Parent(x, y) ∧ Parent(z, y) says x and y have a common child. Here, x and z are
free variables, and y is a bound variable.

• ∃y Parent(x, y) ∧ (∃y Parent(z, y)) says that both x and y have children. Here, y in
the first occurrence of Parent is a different variable from y in the second occurrence.
We talk about the scope of a quantifier to mean part of the formula in which the
variable y is the variable mentioned in the quantifier. Usually, a scope of a quantifier
starts from the place it occurs in the formula and continues until either there is another
quantifier with the same variable name or the parentheses started before the quantifier
are closed.

Although it is technically allowed to reuse the variable names, and it is sometimes
useful in practice (think of a variable name, in software, denoting an allocated chunk
of memory, and reusing the name as reusing the memory), for readability it is better
to use different names for different variables. For example, the formula above has an
equivalent but more readable version ∃y Parent(x, y) ∧ ∃u Parent(z, u). Note that
this would allow us to use u and y together in a predicate later in the formula, if we
wish to.

• ∃y Parent(x, y) ∧ Parent(y, z) says that x is a grandparent of z

• ∀x∃yParent(y, x) says that for everybody somebody is his/her parent. This would be
true about most of reasonable domains. However, changing the order of quantifiers
here we obtain a formula with a very different meaning: ∃y∀xParent(y, x) says that y
is everybody’s parent, which is not likely to be true.

9.3 English and quantifiers

In English, the closest word to the universal quantifier is “all” or “every”. The closest word
to the existential quantifier is “some” and “exists”. But there is one word that can be used
as either a universal or an existential quantifier.That is the word any. Often we take it to
mean a universal quantifier, as in “take any number greater than 1...” (that is, every number
greater than 1 would work). But compare the following two sentences:

“I will be happy if I do well in every class”.
“I will be happy if I do well in any class”.

Here, the word “any” takes the meaning of an existential quantifier: that is, I’ll be happy
if there exists some class in which I do well. Please keep this in mind when doing the
translations.

Puzzle 8. The first formulation of the famous liar’s paradox, done by a Cretan philosopher
Epimenides, stated “All Cretans are liars”. Is this a paradox?
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9.4 Multiple quantifiers

As you might have noticed with the previous examples changing the order of quantifiers
in a formula completely changes its meaning. Note that it only applies to changing order
of quantifiers of different types; changing the order of two ∃ quantifiers next to each other
would not change the meaning.

For any integer x there is an integer y such that x + y = 5. This is not the same as “there
exists y such that for all x x + y = 5”!

To make it easier to remember, think of the following English phrase:

Everybody loves somebody

There are two ways of reading it, corresponding to two different orders of quantifiers:

For every person, there is somebody this person loves (e.g, every person loves
their mother).

There exists a person whom everybody loves (e.g., everybody loves Elvis Presley).

So, when you are translating from English a sentence with alternating quantifiers, think: is
the meaning “mother” or is the meaning “Elvis?”

We can extend this Valentine’s day example to illustrate how the order of quantifiers and
quantifier variables changes the meaning of a formula. Suppose that Loves(x, y) means that
x loves y. Now, consider the following four formulas with their meaning:

∀x∃y Loves(x, y) Each person loves somebody (e.g., loves their own mother).
∃x∀y Loves(x, y) There is somebody who loves everyone in the world (Mother Teresa?)
∀y∃x Loves(x, y) Every person has someone who loves them (their mother loves them)
∃y∀x Loves(x, y) There is somebody who is loved by everyone (pick your favourite celebrity)
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Chapter 10

10.1 Negating quantified formulas

Recall again that to prove that something is not true “everywhere” we need to give a coun-
terexample. Here we will do a few examples of negating first-order formulas with quantifiers.

Example 1. Here is an example of negating a formula with multiple quantifiers. We change
all quantifiers to the opposite, and then negate the formula under the quantifiers as we would
a propositional formula.

¬(∃x∀y∀z∃u(¬P (x, y) ∨ (Q(z, u) ∧ z 6= y))

⇐⇒ ∀x∃y∃z∀u¬(¬P (x, y) ∨ (Q(z, u) ∧ z 6= y))

⇐⇒ ∀x∃y∃z∀u(P (x, y) ∧ (¬Q(z, u) ∨ z = y))

Example 2. Consider the formula ∀x (x2 > x ∨ x < 1). Suppose we want to prove that
this formula is not true when the domain is real numbers R. For that, we need to give
a counterexample to the formula, that is, a real number such that x2 6> x and x 6< 1. A
counterexample that works here is x = 1, since 12 = 1, not > 1, and 1 < 1 does not hold
either. The way we write it is
¬(∀x (x2 > x∨ x < 1) ⇐⇒ ∃x ¬(x2 > x∨ x < 1) ⇐⇒ ∃x (x2 ≤ x∧ x ≥ 1) Here, we took
a simplification one step further than usual, and wrote ¬(x2 > x) as x2 ≤ x, and the same
for x ≥ 1.

Definition 1. An instantiation of a variable is a specific value that this variable is set to.

For example, in the formula x2 > x ∨ x < 1 above we instantiated x to be 1.

Now we can define what it means for one predicate formula to imply another, and for two
formulas to be equivalent. When we say that A(x, . . . , z) → B(x, . . . , z) what we mean
is that for every instantiation (sometimes called “interpretation” in this context) of free
variables, if A(x, . . . , z) is true on that instantiation then so is B(x, . . . , z). Similarly, we say
that A is equivalent to B (that is, A(x, . . . , z) ⇐⇒ B(x, . . . , z)) if for every instantiation
of free variables A ⇐⇒ B) for that instantiation.
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10.2 Derivations in predicate logic

One of the main tools in proving mathematical statements, and in deductive reasoning in
general, is the rule of universal instantiation.

Definition 2. The rule of universal instantiation: if some property is true of everything in
a domain, then it is true of any particular thing in the domain.

So if ∀x x2 ≥ x, then 52 > 5. Another example says that every number is either even or odd
(∀x (2|x∨ 2|x+ 1)). Therefore, if we take some number k, then k is either even or it is odd.

A classical example of reasoning using the rule of universal instantiation is the following:

All men are mortal
Socrates is a man
∴ Socrates is mortal.

There are several ways to write this argument in predicate logic. The first will make use of
the rule of universal instantiation under the assumption that the domain of the quantifier
is “men”. The second one that explicitly specifies the domain by using an implication, will
do the rule of universal instantiation followed by modus ponens. Finally the third one, most
closely resembling the original argument, will combine the universal instantiation and modus
ponens into one rule, called universal modus ponens.

Let us consider predicates Man(x) and Mortal(x), which are true, respectively, on x that
are men, and x that are mortal. Let Men be the set of all men (this is the domain of the ∀
quantifier in the first example).

∀x ∈Men Mortal(x)
∴ Mortal(Socrates)

∀x(Man(x)→Mortal(x)
Man(Socrates)→Mortal(Socrates)
Man(Socrates)
∴ Mortal(Socrates)

∀x(Man(x)→Mortal(x)
Man(Socrates)
∴ Mortal(Socrates)
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The general rule for the universal modus ponens, the rule used in the original form of the
argument and the third translation into logic, is as follows

∀x P (x)→ Q(x)
P (a) for a particular a
∴ Q(a).

Let us look at a more realistic mathematical proof using universal instantiation. Suppose in
a piece of a proof goes as follows:

For all x,m, n, xmxn = xm+n.
For all x, x1 = x.
Therefore, rk+1r = rk+1r1 = rk+2.

Here, we instantiated x = r,m = k + 1, n = 1. In the first equality in the last line, we used
the second premise and in the second equality the first premise. We also used the fact that
1 + 1 = 2.

Puzzle 1. A man walks into a bar and says to the barman: “pour everybody a drink! when
I drink, everyone drinks!”. After he finishes the round, he says again: “pour everybody a
drink! when I drink, everyone drinks!”. The crowd is quite pleased, until he says: “Give me
the bill, I’ll pay. When I pay, everybody pays!”.

What does it have to do with logic, you may ask? Tell me, is there a man such that when
he drinks, everybody drinks?
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Chapter 11

11.1 Equivalences and normal forms

Recall the formula ∃yParent(x, y) ∧ (∃yParent(z, y)). This was our example of a formula
illustrating the scope of a quantifier: here, the scope of the second y is the parentheses where
it is located, and the scope of the first quantifier is the rest of the formula. When we were
discussing this, we said that a variable could be renamed, to avoid the confusion. But note
that if all variables in a formula have different names, then it is possible to make the scope of
each of them the whole formula. So the formula above is equivalent to ∃y∃uParent(x, y) ∧
Parent(z, u). Note that although we moved ∃u to the front of the formula, we did not
change its order relative to ∃y. Although for quantifiers of the same type the order can be
changed, since it cannot be changed between quantifiers of different types it is good to keep
the order of quantifiers the same as it was in the formula. It is often convenient to convert
formulas into such form with all the quantifiers in front (called “prenex normal form”). It
makes it easier to see the order of quantifiers and perform operations such as negation.

So in a first-order formula we can rename a variable (to a variable name which does not occur
in the subformula where we are making the change, obviously), and move the quantifiers to
the front of the formula. What else are we allowed to do? Just as with propositional
formulas, we are allowed to replace a subformula with another logically equivalent formula
(preserving variable names). For example, if we have a formula ∃x∀y(P (y)∨Q(y))∧¬P (x).
then we cannot rename y to x. However, we can rename y to, say, z. Also, we know from
DeMorgan’s law that P (x)∨Q(x) ⇐⇒ ¬(¬P (x)∧¬Q(x)). By changing the variable to y in
this equivalence, we can substitute the new subformula ¬(¬P (y) ∧ ¬Q(y)) into the original
quantified formula to obtain ∃x∀y¬(¬P (y) ∧ ¬Q(y)) ∧ ¬P (x)

11.2 Predicates with finite domains and resolution

Consider the case when domain of a predicate is small (i.e., finite). In this case, it is possible
to represent quantifiers using ∨ and ∧, thus reducing a first-order case to a propositional
case.
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Example 1. Suppose that we consider the relation Parent(x, y) on the domain consisting of
5 people: {John,Bob,Mary,George, Alex}. Consider a formula ∀x∃yParent(x, y), saying
now that each one of these 5 people has another of these 5 as a child (which is not possible, for
a domain like that). Or, alternatively, consider a relation ∀x∀y∃zParent(z, x)∧Parent(z, y),
saying that all people in this list are siblings.

Let’s look at the first one of these relation. To save space, I will just write Parent(x, y) as
P (x, y) here.

What does it mean that ∀xA(x) some formula A(x) is true? In the case of A(x) being
∃yP (x, y), it means that A(x) is true for John and Bob and Mary and George and Alex. So
we can write this as

(∃yP (John, y)) ∧ (∃yP (Bob, y)) ∧ (∃yP (Mary, y)) ∧ (∃yP (George, y)) ∧ (∃yP (Alex, y))

Similarly, what does it mean for an existential quantifier to be true? In this case, the formula
is true either for John, or for Bob, or for Mary and so on. So the formula becomes

(P (John, John) ∨ P (John,Bob) ∨ P (John,Mary) ∨ P (John,George) ∨ P (John,Alex))

∧(P (Bob, John) ∨ P (Bob,Bob) ∨ P (Bob,Mary) ∨ P (Bob,George) ∨ P (Bob,Alex))

∧(P (Mary, John) ∨ P (Mary,Bob) ∨ P (Mary,Mary) ∨ P (Mary,George) ∨ P (Mary,Alex))

∧(P (George, John) ∨ P (George,Bob) ∨ P (George,Mary) ∨ P (George,George) ∨ P (George, Alex))

∧(P (Alex, John) ∨ P (Alex,Bob) ∨ P (Alex,Mary) ∨ P (Alex,George) ∨ P (Alex,Alex))

Now, notice that there are no more free variables in predicates. So in effect they are not
predicates anymore, but propositional variables! We can use, say, a variable pm,b to mean
P (Mary,Bob) is true, and same for the rest of the occurrences of P (). Now, we can write the
formula above as a truly propositional formula ((pjj∨pjb∨· · ·∨pja)∧. . ..Note that once we got
this kind of formula, we can apply resolution to check whether it is a tautology/contradiction.

Example 2. For a more natural example consider the following formula ∃y, 0 ≤ y ≤
1 ∀x, 2 ≤ x ≤ 4 (y + 1 < x) Here, we include the description of the domain into the
quantifier. For this example, suppose also that x, y ∈ N . This formula has the same
meaning as ∃y (0 ≤ y ≤ 1) ∧ (∀(2 ≤ x ≤ 4→ y + 1 < x)), but here we want to treat these
restrictions as restrictions of the domain of the quantifiers.

In this case we have two possible values for y, y = 0 and y = 1, and three possible values for
x, 2, 3 and 4. After the same transformation as in the previous example, computing y + 1
for each y, we obtain the following formula:

(1 < 2 ∧ 1 < 3 ∧ 1 < 4) ∨ (2 < 2 ∧ 2 < 3 ∧ 2 < 4)

Now, this is a propositional formula where we know the meanings of propositions (here, our
propositions are 1 < 2, 2 < 4 and so on) so we can figure out its truth value. The only
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unequality here that is false is 2 < 2, since we took the “strictly greater” relation < here.
This makes the subformula (2 < 2 ∧ 2 < 3 ∧ 2 < 4) false. However, the subformula in the
first set of parentheses is true, therefore the whole formula is true.

When we have many formulas ∨ or ∧ together, it is often convenient to think about it as
just one big ∨ or big ∧ operator over many inputs (we can do this because of the associative
logic identity). For example, the formula above can be written as

∨
0≤y≤1

∧
2≤x≤4 y + 1 < x.

Even more useful this concept becomes when we talk about circuits. In circuits, it is possible
to feed more than two wires into an AND gate, or an OR gate, essentially emulating these
big ∨ and ∧. This is how quantifiers (on finite domains) are represented using circuits.

11.3 Empty set and quantifiers

Recall that an empty set, ∅, is a set containing no elements. What happens when the empty
set is our domain? Then if our quantifier is the universal quantifier, then the formula is always
true! For example, ∀xParent(x, x) is true, as well as ∀x∀yParent(x, y)∧Parent(y, x). Why
would such a strange thing happen?

Remember that one way to talk about domains is to put an implication that if the x is in
the domain, then the formula under quantifier is true. That is, ∀xA(x) can be stated as
∀x(x ∈ domain→ A(x)). But note that if domain = ∅ then the left side of the implication
is always false. Therefore, the whole formula is true: for every x, since x ∈ domain is false,
x ∈ domain→ A(x) is true. Note that from here you can also see that when an existential
quantifier has empty domain, the formula is always false: there is no element in the domain
that could be used to witness the quantifier. One way of explaining it is to say that an
existential quantifier is a negated universal quantifier, so if the universal is always true, then
the existential is always false.

So what happens with big ∨ and big ∧? Remember the logic identities T ∧ p ⇐⇒ p,
F ∨ p ⇐⇒ p? You can see this as saying that an “empty ∧” is true, and an “empty ∨” is
false. This agrees exactly with the fact that a formula with ∀ converted to ∧ and ∃ converted
to ∨ will be true when there are no predicates on ∧ and false when there are no predicates
on ∨.

This brings us to the puzzle from last class, about ”is there a person such that when this
person drinks, everybody drinks”. Yes, and you might know such people: those are the
people who never drink. So the domain of the times they are drinking is an empty set.
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