CS2209A 2017 Applied Logic for Computer Science

Lecture 16 Resolution for Predicate Logic

Instructor: Yu Zhen Xie

Revisit: main rules of inference in propositional logic

• Valid argument:

AND of premises → conclusion is a tautology

• Modus ponens:

 $(p \rightarrow q) \land p \rightarrow q$ is a tautology

- Hypothetical syllogism: $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is a tautology
- Disjunctive syllogism: $(A \lor B) \land \neg A \rightarrow B$ is a tautology
- Resolution: $(A \lor C) \land (B \lor \neg C) \rightarrow (A \lor B)$ is a tautology

Rules of inference

- These patterns describe how new knowledge can be derived from existing knowledge, both in the form of propositional logic formulas (sentences).
- When describing an inference rule, the *premise* specifies the pattern that must match our knowledge base and the *conclusion* is the new knowledge inferred.

Modus ponens, modus tollens, AND elimination, AND introduction, and universal instantiation

- If the sentences P and P → Q are known to be true, then modus ponens lets us infer Q.
- Under the inference rule modus tollens, if P → Q is known to be true and Q is known to be false, we can infer P.
- AND elimination allows us to infer the truth of either of the conjuncts from the truth of a conjunctive sentence.
 E.g. P A Q lets conclude both P and Q are true.
- AND introduction lets us infer the truth of a conjunction from the truth of its conjuncts.
 E.g. if both P and Q are true, then P A Q are true.
- Universal instantiation states that if any universally quantified variable in a true sentence is replaced by any appropriate term from the domain, the result is a true sentence. Thus, if a is from the domain of X, ∀X p(X) lets us infer p(a).

Definition

- A predicate logic (or calculus) expression X
 logically follows from a set S of predicate calculus
 expressions if every interpretation and variable
 assignment that satisfies S also satisfies X.
 - An *interpretation* is an assignment of specific values to domains and predicates.
- An inference rule is **sound** if every predicate calculus expressions also logically follows from S.
- An inference rule is **complete** if, given a set S of predicate calculus expressions, the rule can infer every expression that logically follows from S.

Logic and finding a proof

- Given
 - a knowledge base represented as a set of propositional sentences.
 - a goal stated as a propositional sentence
 - list of inference rules
- We can write a program to repeatedly apply inference rules to the knowledge base in the hope of deriving the goal.

Developing a proof procedure

- Deriving (or refuting) a goal from a collection of logic facts corresponds to a very large search tree.
- A large number of *rules of inference* could be utilized.
- The selection of which rules to apply and when would itself be non-trivial.

Resolution and CNF

- *Resolution* is a single rule of inference that can operate efficiently on a special form of sentences.
- The special form is called *conjunctive normal* form (CNF) or *clausal form*, and has these properties:
 - Every sentence is a disjunction (OR) of literals (clauses)
 - All sentences are implicitly conjuncted (ANDed).

Predicate Logic Resolution

• We have to worry about the arguments to predicates, so it is harder to know when two literals match and can be used by resolution.

– For example, does the literal Father(Bill, Chelsea) match Father(x, y) ?

• The answer depends on how we substitute values for variables.

Proof procedure for predicate logic

- Same idea, but a few added complexities:
 - conversion to CNF is much more complex.
 - Matching of literals requires providing a matching of variables, constants and/or functions.
 - ¬ Skates(x) ∨ LikesHockey(x)
 ¬ LikesHockey(y)

We can resolve these only if we assume x and y refer to the same object.

Predicate Logic and CNF

- Converting to CNF is harder we need to worry about variables and quantifiers.
 - Eliminate all implications \rightarrow
 - Reduce the scope of all to single term
 - Make all variable names unique
 - Move quantifiers left (prenex normal form)
 - Eliminate Existential Quantifiers
 - Eliminate Universal Quantifiers
 - Convert to conjunction of disjuncts
 - Create separate clause for each conjunct.

Eliminate Existential Quantifiers

- Any variable that is existentially quantified means that
 - there is some value for that variable that makes the expression true.
- To eliminate the quantifier, we can replace the variable with a **function**.
- We don't know what the function is, we just know it exists.

Skolem functions

- Named after the Norwegian logician Thoralf Skolem
- **Example:** \exists *y* President(*y*)

We replace y with a new function *func*: President(*func(*)) *func* is called a Skolem function.

 In general the function must have the same number of arguments as the number of universal quantifiers in the current scope.

Skolemization Example

- In general the function must have the *same number of arguments* as the number of **universal** quantifiers in the current scope.
- **Example:** $\forall x \exists y$ Father(*y*, *x*)
 - create a new function named foo and replace y with the function.
 - $\forall x \text{ Father}(foo(x), x)$

- Two formulas are said to unify if there are legal instantiations (assignments of terms to variables) that make the formulas in question *identical*.
- The act of unifying is called **unification**. The instantiation that unifies the formulas in question is called a **unifier**.
- There is a simple algorithm called the *unification* algorithm that does this.

- Example: Unify the formulas Q(a, y, z) and Q(y, b, c)
- Solution:
 - Since y in Q(a, y, z) is a different variable than y in Q(y, b, c), rename y in the second formula to become y1.
 - This means that one must unify Q(a, y, z) with Q(y1, b, c).
 - An instance of Q(a, y, z) is Q(a, b, c) and an instance of Q(y1, b, c) is Q(a, b, c).
 - Since these two instances are identical, Q(a, y, z) and Q(y, b, c) unify.
 - The unifier is y1 = a, y = b, z = c.

- **Unification**: matching literals and doing substitutions that resolution can be applied.
- Substitution: when a variable name is replaced by another variable or element of the domain.
 - Notation [a/x] means replacing all occurrences of
 x with a in the formula
 - Example: substitution [5/x] in $p(x) \vee Q(x,y)$ results in $p(5) \vee Q(5,y)$

- It is an algorithm for determining the substitutions needed to make two predicate logic expressions match.
- A variable cannot be unified with a term containing that variable. The test for it is called the **occurs check**.
 - Example: cannot substitute x for x + y in p(x + y)
 - Most applicable when rather than having variables we have whole expressions (terms) evaluating to elements of the domain.
 - Example: x + y is a term; when $x, y \in \mathbb{Z}$ and $x + y \in \mathbb{Z}$, with terms we can write formulas such as $p(x + y) \lor Q(y 2)$

Algorithm to convert to clausal form (1)

(1) Eliminate conditionals \rightarrow , using the equivalence

 $p \to q \equiv \neg p \lor q$

e.g. $(\exists x)(p(x)\land(\forall y)(f(y) \rightarrow h(x, y)))$ becomes $(\exists x)(p(x)\land(\forall y)(\neg f(y) \lor h(x, y)))$

(2) Eliminate negations or reduce the scope of negation to one atom.

e.g. $\neg \neg p \equiv p$ $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (\forall x \in S, F(x)) \equiv \exists x \in S, \neg F(x)$ $\neg (\exists x \in S, F(x)) \equiv \forall x \in S, \neg F(x)$

(3) Standardize variables within a well-formed formula so that the bound or free variables of each quantifier have unique names. e.g. $(\exists x) \neg p(x) \lor (\forall x)p(x)$ is replaced by $(\exists x) \neg p(x) \lor (\forall y)p(y)$

Algorithm to convert to clausal form (2)

(4) Advanced step: if there are existential quantifiers, eliminate them by using Skolem functions

e.g. $(\exists x)p(x)$ is replaced by p(a) $(\forall x)(\exists y)k(x, y)$ is replaced by $(\forall x) k(x, f(x))$

(5) Convert the formula to prenex form e.g. $(\exists x)(p(x) \land (\forall y) (\neg f(y) \lor h(x, y)))$ becomes $(\forall y) (p(a) \land (\neg f(y) \lor h(a, y)))$

(6) Convert the formulas to CNF, which is a conjunctive of clauses. Each clause is a disjunction.

e.g. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

(7) Drop the universal quantifiers

e.g. the formula in (5) becomes $p(a) \land (\neg f(y) \lor h(a, y))$

Algorithm to convert to clausal form (3)

(8) Eliminate the conjunctive signs by writing the formula as a set of clauses

e.g. $p(a) \land (\neg f(y) \lor h(a, y))$ becomes p(a), $(\neg f(y) \lor h(a, y))$

- (9) Rename variables in clauses, if necessary, so that the same variable name is only used in one clause.
- e.g. $p(x) \lor q(y) \lor k(x, y)$ and $\neg p(x) \lor q(y)$ becomes $p(x) \lor q(y) \lor k(x, y)$ and $\neg p(x1) \lor q(y1)$

Example: Resolution for predicate logic

Anyone passing his history exams and winning the lottery is happy.

\forall X (pass (X,history) \land win (X,lottery) \rightarrow happy (X))

Anyone who studies or is lucky can pass all his exams.

$\forall \ X \ \forall \ Y \ (study \ (X) \ \lor \ lucky \ (X) \ \to \ pass \ (X,Y))$

John did not study but he is lucky.

\neg study (john) \land lucky (john)

Anyone who is lucky wins the lottery.

\forall X (lucky (X) \rightarrow win (X,lottery))

These four predicate statements are now changed to clause form (Section 12.2.2):

- 1. \neg pass (X, history) $\lor \neg$ win (X, lottery) \lor happy (X)
- 2. \neg study (Y) \lor pass (Y, Z)
- 3. \neg lucky (W) \lor pass (W, V)
- 4. study (john)
- 5. lucky (john)
- 6. \neg lucky (U) \lor win (U, lottery)

Into these clauses is entered, in clause form, the negation of the conclusion:

7. – happy (john)

