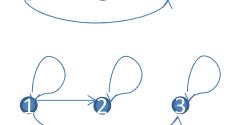
CS2209A 2017 Applied Logic for Computer Science

Lecture 18, 19 Well-ordering and induction

Instructor: Marc Moreno Maza

Partial and total orders

- A binary relation $R \subseteq A \times A$ is an **order** if R is **reflexive**, **anti-symmetric** and **transitive**.
 - R is a **total order** if $\forall x, y \in A \ R(x, y) \lor R(y, x)$
 - That is, every two elements of A are related.
 - E.g. $R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \le y\}$ is a total order.
 - So is alphabetical order of English words.
 - But not $R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\}$
 - not reflexive, so not an order.
 - Otherwise, R is a partial order.
 - $SUBSETS = \{(A, B) \mid A, B \text{ are sets } \land A \subseteq B \}$ is a partial order.
 - Reflexive: $\forall A, A \subseteq A$
 - Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 - Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 - Not total: if A ={1,2} and B ={1,3}, then neither $A \subseteq B$ nor $B \subseteq A$
 - $DIVISORS = \{(x,y) \mid x, y \in \mathbb{N} \land x, y \ge 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\}$ is a partial order.
 - **PARENT** is not an order. But **ANCESTOR** would be, if defined so that each person is an ancestor of themselves. It is a partial order.

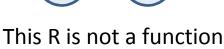


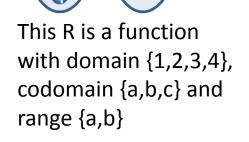
Partial and total orders

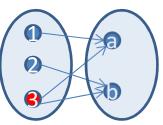
- An order may have **minimal** and **maximal** elements (maybe multiple)
 - $-x \in A$ is minimal in R if $\forall y \in A \ y \neq x \rightarrow \neg R(y, x)$
 - and maximal if $\forall y \in A \ y \neq x \rightarrow \neg R(x, y)$
 - Ø is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in DIVISORS, and there are no maximal elements.

Functions

- A function $f: X \to Y$ is a relation on $X \times Y$ such that for every $x \in X$ there is at most one $y \in Y$ for which (x, y) is in the relation.
 - Usual notation: f(x) = y
 - y is an **image** of x under f.
 - X is the **domain** of f
 - Y is the **codomain** of f
 - Range of f (image of X under f):
 - $\{y \in Y \mid \exists x \in X, f(x) = y\}$
 - **Preimage** of a given $y \in Y$:
 - $\{x \in X \mid f(x) = y\}$
 - Preimage of b is {2,3}.

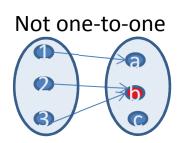






Functions

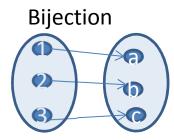
- A function $f: X \to Y$ is
 - Total: $\forall x \in X \exists y \in Y f(x) = y$
 - f: $\mathbb{Z} \to \mathbb{Z}$
 - f(x) = x + 1 is total.
 - $f(x) = \frac{100}{x}$ is not total. Why?
 - Onto: $\forall y \in Y \exists x \in X f(x) = y$
 - f(x) = x + 1 is onto over \mathbb{Z} , but not over \mathbb{N}
 - One-to-one: $\forall x_1, x_2 \in X (f(x_1) = f(x_1) \rightarrow x_1 = x_2)$
 - f(x) = x + 1 is one-to-one.
 - $f(x) = x^2$ is not one-to-one
 - Bijection: both one-to-one and onto.
 - f(x) = x + 1 is a bijection over \mathbb{Z} .



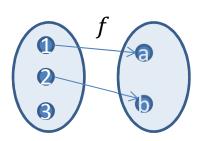
Not total

えつ

0



Functions



• An **inverse** of f is $f^{-1}: Y \to X$, such that $f^{-1}(y) = x$ iff f(x) = y

$$-f(x) = x + 1, f^{-1}(y) = y - 1$$

- Only one-to-one functions have an inverse

- **Composition** of $f: X \to Y$ and $g: Y \to Z$ is $g \circ f: X \to Z$ such that $(g \circ f)(x) = g(f(x))$

$$-f(x) = \frac{x}{5}, g(x) = [x], \text{ over } \mathbb{R}$$

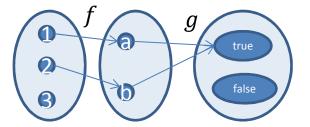
• [x] is ceiling: x rounded up to nearest integer.

$$-(g \circ f)(x) = g(f(x)) = \left[\frac{x}{5}\right]$$

$$- (f \circ g)(x) = f(g(x)) = \frac{[x]}{5}$$

$$-(g \circ f)(12.5) = [2.5] = 3$$

$$-(f \circ g)(12.5) = 13/5 = 2.6$$



Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 - Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 - Like British three pence.
 - What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?

7c

Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).

Well-ordering principle

- Any non-empty subset of natural numbers contains the least element
 - With respect to the usual total order $x \leq y$
 - Very useful for proofs!

Well-ordering principle

- Coins: $\forall x \in \mathbb{N}$, if x >7 then $\exists y, z \in \mathbb{N}$ such that x = 3y+5z. So any amount >7 can be paid with 3s and 5s.
 - Suppose, for the sake of contradiction, that there are amounts greater than 7 which cannot be paid with 3s and 5s.
 - Take a set S of all such amounts. Since $S \subseteq \mathbb{N}$, and we assumed that $S \neq \emptyset$, by well-ordering principle S has the least element. Call it n.
 - Now, look at n-3; it cannot be paid by 3s and 5s either.
 - Since n is the least element of S, $n 3 \le 7 < n$
 - 3 cases:
 - n-3 = 7. Then n=10=2*5.
 - n-3 = 6. Then n=9=3*3
 - n-3 = 5. Then n=8=3+5.
 - In all three cases, got a contradiction.
 - Therefore, for every $x \in \mathbb{N}$, if x >7 then x=3y+5z for some $y, z \in \mathbb{N}$.

Sums, products and sequences

- How to write long sums, e.g., 1+2+... (n-1)+n concisely?
 - Sum notation ("sum from 1 to n"): $\sum_{i=1}^{n} i = 1 + 2 + \dots + n$
 - If n=3, $\sum_{i=1}^{3} i = 1+2+3=6$.
 - The name "*i*" does not matter. Could use another letter not yet in use.
- In general, let $f: \mathbb{Z} \to \mathbb{R}$, $m, n \in \mathbb{Z}$, $m \leq n$.
 - $-\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + \dots + f(n)$
 - If m=n, $\sum_{i=m}^{n} f(i) = f(m) = f(n)$.
 - If n=m+1, $\sum_{i=m}^{n} f(i) = f(m)+f(m+1)$
 - If n>m, $\sum_{i=m}^{n} f(i) = (\sum_{i=m}^{n-1} f(i)) + f(n)$
 - Example: $f(x) = x^2$. $2^2 + 3^2 + 4^2 = \sum_{i=2}^4 i^2 = 29$

Sums, products and sequences

- Similarly for product notation (product from m to n):
 - $\prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \cdot \dots \cdot f(n) =$ $(\prod_{i=m}^{n-1} f(i)) \cdot f(n)$
 - -For f(x) = x, $2 \cdot 3 \cdot 4 = \prod_{i=2}^{4} i = 24$
 - $-1 \cdot 2 \cdot \ldots \cdot n = \prod_{i=1}^{n} i = n!$ (n factorial)

Sum of numbers formula

- Claim: for any $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- Proof.
 - Suppose not.

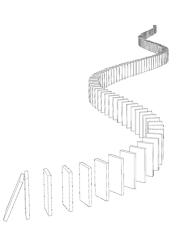
- Gauss' proof: 1 + 2 + ... + 99 + 100 + 100 + 99 + ... + 2 + 1 = 101 + 101 + ... + 101 + 101 = 100*101 So 1+2+ ... + 99 + 100 = $\frac{100*101}{2}$ Works for any n, not just n=100
- Let S be a set of all numbers n' such that $\sum_{i=0}^{n'} i \neq \frac{n'(n'+1)}{2}$. By well-ordering principle, if $S \neq \emptyset$, then there is the least number k in S.
- Case 1: k=0. But $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$. So formula works for k=0.
- Case 2: k>0. Then $k 1 \ge 0$.
 - So $\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k$.
 - As k is the smallest bad number, the formula works for k-1.

• So
$$\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$$

- Now, $\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2 k + 2k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}$
- So the formula works for k>0, too.
- Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

Mathematical induction

- Want to prove a statement $\forall x \in \mathbb{N} \ P(x)$.
 - Check that P(0) holds
 - And whenever P(k) does not hold for some k, P(k-1) does not hold either
 - Contradicting well-ordering principle.
 - Contrapositive:
 - if P(k-1) holds for arbitrary k,
 - then P(k) also must be true.
 - Conclude that $\forall x \in \mathbb{N} \ P(x)$



Mathematical induction

- 11000
- Want to prove a statement $\forall x \in \mathbb{N} \ P(x)$.
 - Check that P(0) holds

Proving that P(0) holds is called the **base case**.

- And whenever P(k) does not hold for some k, P(k-1) does not hold either
 - Contradicting well-ordering principle.
 - Contrapositive: That P(k-1) holds is an induction hypothesis
 - if P(k-1) holds for arbitrary k,
 - then P(k) also must be true.

Proving that $P(k-1) \rightarrow P(k)$ Is the **induction step**

- Conclude that $\forall x \in \mathbb{N} \ P(x)$

Mathematical Induction principle: If $P(0) \land \forall k \in \mathbb{N}$ $P(k) \rightarrow P(k+1)$ then $\forall x \in \mathbb{N} P(x)$

Sum of numbers formula

- Claim: for any $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- Proof (by induction).
 - P(n) is $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ (statement we are proving by induction on n)
 - **Base case**: k=0. Then $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
 - Induction hypothesis: Assume that $\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$ for an arbitrary k >0
 - That is, for an arbitrary number $k\text{-}1\in\mathbb{N}$
 - Can take k instead of k-1, but k-1 makes calculations simpler.
 - Induction step: show that P(k-1) implies P(k).
 - $\sum_{i=0}^{k} i = (\sum_{i=1}^{k-1} i) + k.$
 - By induction hypothesis, $\sum_{i=1}^{k-1} i = \frac{(k-1)k}{2}$
 - Now, $\sum_{i=1}^{k} i = (\sum_{i=1}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2 k + 2k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}$
 - **By induction**, therefore, P(n) holds for all $n \in \mathbb{N}$.

Changing the base case

- Mathematical Induction principle: $-(P(0) \land \forall k \in \mathbb{N} \ P(k) \rightarrow P(k+1)) \rightarrow \forall x \in \mathbb{N} \ P(x)$
- What if want to prove it only for $x \ge a$?
 - Make a the base case (when $a \ge 0$). For the rest, assume $k \ge a$.
 - $-\left(\mathsf{P}(\mathsf{a})\land\forall\,k\geq a\ \ \mathsf{P}(\mathsf{k})\to\mathsf{P}(\mathsf{k+1})\right)\ \to\forall x\geq a\ P(x)$
 - Here, $\forall x \ge a \ P(x)$ is a shorthand for $\forall x \in \mathbb{N} \ (x \ge a \rightarrow P(x))$
 - To prove it works, prove P(n') where n' = n-a.

Changing the base case

- Example: show that for all $n \ge 4$, $2^n \ge n^2$
 - $P(n): 2^n \ge n^2$
 - **Base case**: n=4. $2^4 = 16 = 4^2$
 - Induction hypothesis: assume that for an arbitrary $k \ge a$, $2^k \ge k^2$
 - Induction step: show that $2^k \ge k^2$ implies $2^{k+1} \ge (k+1)^2$
 - $2^{k+1} = 2 \cdot 2^k = 2^k + 2^k \ge k^2 + k^2$
 - $(k+1)^2 = k^2 + 2k + 1$.
 - Want: $k^2 + k^2 \ge k^2 + 2k + 1$, so $k^2 \ge 2k + 1$
 - Dividing both sides of the inequality by k: $k \ge 2 + \frac{1}{k}$
 - Since k ≥ 4, and 2 + $\frac{1}{k} \le 3$, 2 + $\frac{1}{k} \le 3 < 4 \le k$. So $k \ge 2 + \frac{1}{k}$ and thus $k^2 \ge 2k + 1$
 - So $2^{k+1} = 2 \cdot 2^k = 2^k + 2^k \ge k^2 + k^2 \ge k^2 + 2k + 1 = (k+1)^2$
 - By induction, for all $n \ge 4$, $2^n \ge n^2$
- Corollary: as n grows, an algorithm running in time n^2 will quickly outperform an algorithm running in time 2^n

Strong induction

- For our coins problem, needed not just P(k-1), but P(k-3), and to look at three cases.
- Mathematical Induction principle: $-(P(0) \land \forall k \in \mathbb{N} \ P(k) \rightarrow P(k+1)) \rightarrow \forall x \in \mathbb{N} \ P(x)$
- Strong Induction principle:
 - $-\left(\exists b \in \mathbb{N} \ \forall c \in \mathbb{N} \ \left(0 \le c \land c \le b \to P(c)\right)\right)$ $\land \forall k > b \ \left(\forall i \in \{0, \dots, k-1\} \ P(i)\right) \to P(k)\right)$ $\rightarrow \forall x \in \mathbb{N} \ P(x)$

Strong induction

- Strong induction seems stronger...
 - But in fact, mathematical induction, strong induction and well-order principles are equivalent to each other.
 - So choose the most convenient one.

Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 - Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 - Like British three pence.
 - What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?

7c

Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).

Strong induction

- Strong Induction principle (general form):
 - $\begin{array}{l} (\exists b \in \mathbb{N} \ \forall c \in \mathbb{N} \ \left(a \leq c \land c \leq b \rightarrow \operatorname{P}(c) \right) \\ \land \forall k > b \ \left(\forall i \in \{a, \dots, k-1\} \ \operatorname{P}(i) \right) \rightarrow \operatorname{P}(k) \right) \\ \rightarrow \forall x \in \mathbb{N} \ \left(x \geq a \rightarrow P(x) \right) \end{array}$

- Coins: $\forall x \in \mathbb{N}$, if x >7 then $\exists y, z \in \mathbb{N}$ such that x = 3y+5z.
 - P(n): $\exists y, z \in \mathbb{N}$ n = 3y + 5z. Also, a=8.
 - **− Base cases**: b = 10, so *c* ∈ {8,9,10}
 - n=8. $8 = 3 \cdot 1 + 5 \cdot 1$, so y=1, z=1.
 - n=9. 9=3·3, y=3, z=0
 - n=10. 10=5 · 5. y=0, z=2.
 - Induction hypothesis: Let k be an arbitrary integer such that k > 10. Assume that for all $i \in \mathbb{N}$ such that $8 \le i < k \exists y_i, z_i \in \mathbb{N}$ $i = 3y_i + 5z_i$
 - Induction step. Show that induction hypothesis implies that $\exists y, z \in \mathbb{N} \ k = 3y + 5z$
 - Since $k \ge b$, $k-3 \ge a$. So by induction hypothesis $\exists y_{k-3}, z_{k-3} \in \mathbb{N}$ $k-3 = 3y_{k-3} + 5z_{k-3}$. Now take $z=z_{k-3}$ and $y = y_{k-3} + 1$. Then k = 3y+5z.
 - By strong induction, get that for all x > 7, ∃ $y, z \in \mathbb{N}$ such that x = 3y+5z.

Puzzle: all horses are white

- Claim: all horses are white.
- Proof (by induction):
 - P(n): any n horses are white.
 - Base case: P(0) holds vacuously
 - Induction hypothesis: any k horses are white.
 - Induction step: if any k horses are white, then any k+1 horses are white.
 - Take an arbitrary set of k+1 horses. Take a horse out.
 - The remaining k horses are white by induction hypothesis.
 - Now put that horse back in, and take out another horse.
 - Remaining k horses are again white by induction hypothesis.
 - Therefore, all the k+1 horses in that set are white.
 - By induction, all horses are white.

What's wrong here?