
Lecture 18, 19 Well-ordering and induction 
CS2209A 2017Applied Logic for Computer Science

Instructor: Marc Moreno Maza
1



Partial and total orders 
• A binary relation  � ⊆ � × �	is an order if R is reflexive, anti-symmetric and transitive. 
– R is a total order if ∀�, 	 ∈ �		� �, 	 ∨ �(	, �)

• That is, every two elements of A are related. 
• E.g.  �� = �, 	 �, 	 ∈ ℤ ∧ � ≤ 	}	is a total order.  
• So is alphabetical order of English words.  
• But not �� = �, 	 �, 	 ∈ ℤ ∧ � < 	}

– not reflexive, so not an order. 
– Otherwise, R is a partial order. 

• ������� = �, � 	 	�, �	���	���� ∧ 	� ⊆ �	} is a partial order. 
– Reflexive:  ∀�, � ⊆ �	
– Anti-symmetric:  ∀	�, �		� ⊆ � ∧ � ⊆ � → � = �	
– Transitive:  ∀�, �, !		� ⊆ � ∧ � ⊆ ! → � ⊆ !
– Not total:   if A ={1,2} and B ={1,3}, then neither � ⊆ �	nor � ⊆ �	

• "#$#�%�� =	{(x,y)| �, 	 ∈ ℕ ∧ �, 	 ≥ 2	 ∧ ∃* ∈ ℕ			 = * ⋅ �}	 is a partial order.
• PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves. It is a partial order. 
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Partial and total orders 
• An order may have minimal and maximalelements (maybe multiple)
– � ∈ �	is minimal in R if ∀	 ∈ �			 ≠ � → 	¬�(	, �)
• and maximal if ∀	 ∈ �		 ≠ � → ¬� �, 	

– ∅	is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum). 
– All primes are minimal in DIVISORS, and there are no maximal elements. 



Functions
• A function /: 1 → 2	is a relation on X	× 2	such that for every � ∈	X there is at most one 	 ∈ 2	for which �, 	 is in the relation. 
– Usual notation: / � = 	

• y is an image of x under f.
– X is the domain of f 
– Y is the codomain of f
– Range of f (image of X under f): 

• y ∈ 2	 ∃� ∈ 1, / � = 	}
– Preimage of a given 	 ∈ 2:	

• � ∈ 1	 / � = 	}
– Preimage of b is {2,3}. 

This R is not a function
123 ab
123 ab

This R is a functionwith domain {1,2,3,4}, codomain {a,b,c} and range {a,b}
4 c



Functions
• A function /: 1 → 2	is 
– Total:  ∀� ∈ 1	∃	 ∈ 2	/ � = 	

• f: ℤ → ℤ	
• / �	 = � 4 1 is total.   
• / � = �667 is not total. Why?

– Onto: 	∀	 ∈ 2	∃� ∈ 1	/ � = 	
• / �	 = � 4 1 is onto over ℤ, but not over ℕ

– One-to-one: 	∀��,�� ∈ 1	(/ �� =	f x� → �� = ��	)
• / � = � 4 1 is one-to-one. 
• / � = ��	 is not one-to-one 

– Bijection: both one-to-one and onto.
• / � = � 4 1	 is a bijection over ℤ.

123 ab
Not total 

c
123 ab
Not onto 

c
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Not one-to-one 
c

123 abc
Bijection



Functions
• An inverse of /	is /;�: 2 → 1,	such that /;� 	 = �	 iff 	/ � = 	

– / � = � 4 1, /;� 	 = 	 < 1
– Only one-to-one functions have an inverse

• Composition of /: 1 → 2	 and =: 2 → > is = ∘ /: 1 → >	such that (= ∘ /) � = =(/ � )
– / � = 7@ , = � = A�B, over C

• A�B is ceiling: x rounded up to nearest integer.
– = ∘ /	 � = = / � = 7@
– / ∘ =	 � = / = � = 7@
– = ∘ /	 (12.5) = 2.5 = 3
– / ∘ =	 (12.5) = 13/5= 2.6

• Order matters! 

123ab
/;�

123 ab true
false

/ =

123 ab
/



Puzzle:  coins 
• A not-too-far-away country recently got rid of a penny coin,  and now everything needs to be rounded to the nearest multiple of 5 cents…  
– Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.

• Like British three pence.   
– What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin? 7cAny number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5). 



Well-ordering principle
• Any non-empty subset of natural numbers contains the least element 
– With respect to the usual total order � ≤ 	
– Very useful for proofs! 



Well-ordering principle
• Coins:  ∀� ∈ ℕ,	if x >7 then ∃		, * ∈ ℕ such that x = 3y+5z. So any amount >7 can be paid with 3s and 5s. 
– Suppose, for the sake of contradiction, that there are  amounts greater than 7 which cannot be paid with 3s and 5s. 
– Take a set S of all such amounts. Since � ⊆ ℕ,	and we assumed that � ≠ ∅,	 by well-ordering principle  S has the least element. Call it n. 
– Now, look at n-3; it cannot be paid by 3s and 5s either.  
– Since n is the least element of S,  G < 3 ≤ 7 < G
– 3  cases: 

• n-3 = 7. Then  n=10=2*5.   
• n-3 = 6. Then  n=9=3*3 
• n-3 = 5.  Then n=8=3+5.   

– In all three cases, got a contradiction. 
– Therefore,  for every � ∈ ℕ, if  x >7 then x=3y+5z for  some 	, * ∈ ℕ.    



Sums, products and sequences
• How to write long sums, e.g., 1+2+… (n-1)+n concisely? 
– Sum notation (“sum from 1 to n”):  ∑ JKLM�	 = 1 4 2 4	…4 G
• If n=3, ∑ JOLM�	 	= 1+2+3=6.  
• The name “J“ does not matter. Could use another letter not yet in use.

• In general, let  /: ℤ → C, Q, G ∈ ℤ,Q ≤ G.
– ∑ /(J)KLMR	 = 	/ Q 4 / Q 4 1 4⋯4 / G
• If m=n, ∑ /(J)KLMR	 =f(m)=f(n). 
• If n=m+1, ∑ /(J)KLMR	 = f(m)+f(m+1) 
• If n>m,   ∑ /(J)KLMR	 = (∑ /(J)K;�LMR	 ) 4 /(G)
• Example: / � = ��.   2� 4 3� 4 4� = ∑ J�ULM�	 = 29	



Sums, products and sequences
• Similarly for product notation (product from m to n): 
– ΠLMRK 	/ J = / Q ⋅ / Q 4 1 ⋅ … ⋅ / G = (ΠLMRK;� 	/ J ) ⋅ /(G)
– For  / � = �,  2 ⋅ 3 ⋅ 4		 = ΠLM�U 	J = 24	
– 1 ⋅ 2 ⋅ …	⋅ G = ΠLM�K 	J = G! (n factorial)



Sum of numbers formula
• Claim: for any n∈ ℕ, ∑ JKLM6	 = K KY��
• Proof. 

– Suppose not.  
– Let S be a set of all numbers n’ such that ∑ JKZLM6	 ≠ KZ KZY�� .  By well-ordering principle, if � ≠ ∅, then  there is the least number k in S. 
– Case 1:  k=0.  But ∑ J6LM6	 = 0 = 6 6Y�� . So formula works for k=0.  
– Case 2:  k>0.  Then  \ < 1 ≥ 0.	

• So  ∑ J]LM6	 = (∑ J];�LM6	 ) +k.  
• As k is the smallest bad number, the formula works for k-1.  
• So ∑ J		];�LM6	 = ^;� ^�
• Now, ∑ J]LM6	 = (∑ J];�LM6	 ) +k = ^;� ^� 4 k = ^`;^Y�^� = ^`Y]� = ](]Y�)�
• So the formula works for k>0, too.  

– Contradiction. So S is empty, thus the formula works for all G ∈ ℕ.

Gauss’ proof:  1     +  2   +  … + 99  + 100 +100 + 99  + … +  2    + 1     = 101 + 101+ … +101 + 101 =100*101So 1+2+ … + 99 + 100 =�66∗�6��Works for any n, not just n=100 



Mathematical induction
• Want to prove a statement  ∀� ∈ ℕ		b � .
– Check that b 0 holds 
– And whenever b \ does not hold for some k, b \ < 1 does not hold either
• Contradicting well-ordering principle. 
• Contrapositive:  
– if  P(k-1) holds for arbitrary k, 
– then P(k) also must be true.

– Conclude that ∀� ∈ ℕ		b � 	



Mathematical induction
• Want to prove a statement  ∀� ∈ ℕ		b � .
– Check that b 0 holds 
– And whenever b \ does not hold for some k, b \ < 1 does not hold either
• Contradicting well-ordering principle. 
• Contrapositive:  
– if  P(k-1) holds for arbitrary k, 
– then P(k) also must be true.

– Conclude that ∀� ∈ ℕ		b � 	

Proving that P(0) holds is called the base case. 

That P(k-1) holds is an induction hypothesis
→	Proving that P(k-1) →	P(k)  Is the induction step

P 0 ∧ ∀	\ ∈ ℕ	 →	 ∀� ∈ ℕ	b(�)Mathematical Induction principle:  If  P 0 ∧ ∀	\ ∈ ℕ	 P(k) →	P(k+1) then  ∀� ∈ ℕ	b(�)



Sum of numbers formula
• Claim: for any n∈ ℕ,  ∑ JKLM6	 = K KY��
• Proof (by induction).

– P(n)  is  ∑ JKLM6	 = K KY�� (statement we are proving by induction on n) 
– Base case: k=0.  Then ∑ J6LM6	 = 0 = 6 6Y�� . 
– Induction hypothesis: Assume that ∑ J];�LM6	 = ];� ]	� for an arbitrary k >0

• That is, for an arbitrary number k-1 ∈ ℕ
• Can take k instead of k-1, but k-1 makes calculations simpler.  

– Induction step:  show that P(k-1) implies P(k). 
• ∑ J]LM6	 = (∑ J];�LM�	 ) +k.  
• By induction hypothesis,  ∑ J		];�LM�	 = ^;� ^�
• Now, ∑ J]LM�	 = (∑ J];�LM�	 ) +k = ^;� ^� 4 k = ^`;^Y�^� = ^`Y]� = ](]Y�)�

– By induction, therefore,  P(n) holds for all G ∈ ℕ.



Changing the base case
• Mathematical Induction principle:  
– (P 0 ∧ ∀	\ ∈ ℕ	 P(k) →	P(k+1))  → ∀� ∈ ℕ	b(�)

• What if want to prove it only for � ≥ �?
– Make � the base case (when � ≥ 0).  For the rest, assume \ ≥ �.  
– (P a ∧ ∀	\ ≥ �	 P(k) →	P(k+1))   → ∀� ≥ �		b(�)

• Here,  ∀� ≥ �		b � 		is a shorthand for ∀� ∈ ℕ			 � ≥ � → b �
– To prove it works, prove P(n’) where n’ = n-a.   



Changing the base case
• Example: show that for all G ≥ 4, 2K ≥ G�
– b G :			2K ≥ G�	
– Base case:  n=4. 2U = 16 = 4�
– Induction hypothesis: assume that for an arbitrary \ ≥ �,	2] ≥ \�
– Induction step:  show that 2] ≥ \� implies 2]Y� ≥ (\ 4 1)�

• 2]Y� = 2 ⋅ 2] = 2] 4 2] ≥ \� 4 \�	
• \ 4 1 � = \� 4 2\ 4 1.	
• Want: \� 4 \� ≥ \� 4 2\ 4 1, so \� ≥ 2\ 4 1

– Dividing both sides of the inequality by k:   \ ≥ 2 4 �]
– Since k ≥ 4, and 2 4 �] ≤ 3, 	2 4 �] ≤ 3 < 4 ≤ \.  So \ ≥ 2 4 �]	and thus \� ≥ 2\ 4 1

• So 2]Y� = 2 ⋅ 2] = 2] 4 2] ≥ \� 4 \� ≥ \� 4 2\ 4 1 = \ 4 1 �
– By induction, for all G ≥ 4, 2K ≥ G�

• Corollary:  as n grows, an algorithm running  in time  G�will quickly outperform an algorithm running in time 2K



Strong induction
• For our coins problem, needed not just P(k-1),  but P(k-3), and to look at three cases.   
• Mathematical Induction principle:  
– (P 0 ∧ ∀	\ ∈ ℕ	 P(k)→	P(k+1))   → ∀� ∈ ℕ	b(�)

• Strong Induction principle:  
– ∃f ∈ ℕ		∀g ∈ ℕ	 0 ≤ g ∧ g ≤ f → 	P c∧ ∀	\ i f			(∀	J	 ∈ j0,… , \ < 1}	 P(i)) → 	P(k))  → ∀� ∈ ℕ	b(�)



Strong induction
• Strong induction seems stronger… 
– But in fact, mathematical induction, strong induction and well-order principles are equivalent to each other.
– So choose the most convenient one.  



Puzzle:  coins 
• A not-too-far-away country recently got rid of a penny coin,  and now everything needs to be rounded to the nearest multiple of 5 cents…  
– Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
• Like British three pence.   

– What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin? 7cAny number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5). 



Strong induction
• Strong Induction principle (general form):  

– (∃f ∈ ℕ		∀g ∈ ℕ	 � ≤ g ∧ g ≤ f → 	P c∧ ∀	\ i f			(∀	J	 ∈ j�, … , \ < 1}	 P(i)) →	P(k)) → ∀� ∈ ℕ	 � ≥ � → 	b �
• Coins:  ∀� ∈ ℕ,	if x >7 then ∃		, * ∈ ℕ such that x = 3y+5z.   

– P(n):   ∃		, * ∈ ℕ		G = 3	 4 5*	.	 Also, a=8. 
– Base cases: b = 10, so g ∈ 8,9,10

• n=8.    8 = 3 ⋅ 1 4 5 ⋅ 1, so y=1, z=1. 
• n=9.    9=3⋅ 3,  y=3, z=0
• n=10.  10=5 ⋅ 5. y=0, z=2. 

– Induction hypothesis: Let k be an arbitrary integer such that \ i 10.	 Assume that for all J ∈ ℕ	 such that 8 ≤ J	 <\	∃		L , *L ∈ ℕ			J = 3	L 4 5*L
– Induction step. Show that induction hypothesis implies that ∃		, * ∈ ℕ		\ = 3	 4 5*	

• Since \ ≥ f, 	\ < 3 ≥ �.	So by induction hypothesis ∃		];O, *];O ∈ℕ			\ < 3 = 3	];O 4 5*];O.	 Now take z=*];O and y = 	];O +1.   Then k = 3y+5z. 
– By strong induction, get that for all x > 7, ∃		, * ∈ ℕ such that x = 3y+5z.



Puzzle: all horses are white
• Claim: all horses are white. 
• Proof (by induction): 
– P(n):  any n horses are white. 
– Base case:  P(0) holds vacuously
– Induction hypothesis: any k horses are white. 
– Induction step: if any k horses are white, then any k+1 horses are white. 

• Take an arbitrary set of k+1 horses.  Take a horse out. 
– The remaining k horses are white by induction hypothesis. 

• Now put that horse back in, and take out another horse.  
– Remaining k horses are again white by induction hypothesis. 

• Therefore, all the k+1 horses in that set are white.
– By induction, all horses are white. What’s wrong here?


