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Propositional formula

Definition

Let V be a finite set of Boolean valued variables. A propositional formula on V is
defined inductively as follows:

each of the constants false, true is a propositional formula on V ,

any element of V is a propositional formula on V ,

if φ and φ′ are propositional formulas on V then ¬φ, (φ), φ ∧ φ′, φ ∨ φ′,
φ → φ′, φ ↔ φ′ are propositional formulas on V as well.

Examples and counter-examples

p ∨ ¬q is a propositional formula on V = {p, q},
p + ¬q is not a propositional formula on V = {p, q},
p ∨ ¬q is not a propositional formula on V = {p},
( ) is not a propositional formula on V = {p, q}.
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Assignment

Definition

Let again V be a finite set of Boolean valued variables.

An assignment on V is any map from V to {false, true}.
Any assignment v on V induces an assignment on the propositional formulas
on V by applying the following rules: if φ and φ′ are propositional formulas
on V then we have:

1 v(¬φ) = ¬v(φ),
2 v(φ ∧ φ′) = v(φ) ∧ v(φ)′,
3 v(φ ∨ φ′) = v(φ) ∨ v(φ′),
4 v(φ → φ′) = v(φ) → v(φ′),
5 v(φ ↔ φ′) = v(φ) ↔ v(φ′).

Example

For the set of Boolean variables V = {p, q}. define v(p) = false and v(q) = true.
Then, we have:

v(p → q) = true.

v(p ↔ q) = false.
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Satisfiability (1/4)

Definition

Let again V be a finite set of Boolean valued variables and let φ propositional
formula on V .

An assignment v on V is a satisfying assignment for φ if we have v(φ) = true.

The propositional formula φ is said satisfiable if there exists a satisfying
assignment for φ.

Deciding whether or not a propositional formula is satisfiable is called the Boolean
satisfiability problem, denoted by SAT.

Example

p ∧ (q ∨ ¬p) ∧ (¬q ∨ ¬r) is satisfiable for v(p) = true, v(q) = true, v(r) = false.
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Satisfiability (2/4)

Example

The formula is p ∧ (q ∨ ¬p) ∧ (¬q ∨ ¬p) is unsatisfiable. Indeed:

the first clause, namely p, implies that p must be true,

then, the second clause, namely (q ∨ ¬p), implies that q must be true,

then, the third clause, namely (¬q ∨ ¬p) is false,

thus the whole formula cannot be satisfied.

Remarks

Simple method for checking satisfiability: the truth table method, that is,
check all 2n possibilities for v, where n is the number of variables in V .

This always works, but has a running time growing exponentially with n.

Practical algorithms and software solving SAT problems also run in time
O(2n) but plays many tricks to terminate computations as early as possible.
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Satisfiability (3/4)

Eight queens puzzle: general statement

Go to https://en.wikipedia.org/wiki/Eight_queens_puzzle and
read.

For n = 4, there are two solutions.

Exercise: how to phrase the search for those solutions into a SAT problem?

Hints:
• What should the Boolean variables represent?
• What should the propositional formula represent?

Remember the rules:
• at most one (and at least one) queen in every row,
• at most one (and at least one) queen in every column,
• at most one queen in every diagonal.
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Satisfiability (4/4)

Eight queens puzzle: case n = 2

Associate a Boolean variable with each of the four corners, say a, b, c and d
in clock-wise order.

Exactly one queen on the top row writes: (a ∨ b) ∧ ¬(a ∧ b).
Exactly one queen on the bottom row writes: (c ∨ d) ∧ ¬(c ∧ d).
Exactly one queen on the left column writes: (a ∨ d) ∧ ¬(a ∧ d).
Exactly one queen on the left column writes: (b ∨ c) ∧ ¬(b ∧ c).
No two queens on the same diagonal writes: ¬(a ∧ c) ∧ ¬(b ∧ d).
We need some help to determine of the conjunction of these 5 formulas is
satisfiable!
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SAT solvers

Modern SAT solvers are based on resolution, and only apply to input
formulas in conjunctive normal form (CNF).

A conjunctive normal form (CNF) is a conjunction of clauses

A clause is a disjunction of literals, say a1 ∨⋯ ∨ an, where a1, . . . , an are
literals.

A literal is a Boolean variable or the negation of a Boolean variable

Hence a CNF is of the form

⋀1≤i≤s (⋁1≤j≤tj
`i,j)

where the `i,j ’s are literals.

SAT solvers have many applications. Problems involving

binary arithmetic

program correctness

termination of rewriting

puzzles like Sudoku

can be encoded as SAT problems
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The yices SAT solver (1/3)

Calling sequence

The solver yices is simply used by calling

yices -e -smt test.smt

where test.smt contains the formula to test.

The input file uses a Lisp-like syntax where and and or can have any number
of arguments.

Availability

The SAT solver yices is publicly available at
http://yices.csl.sri.com/old/download-yices1-full.html for
Linux, MacOS and Windows.

Important: yices requires the GMP library https://gmplib.org/.

Installation under Linux and MacOS is straightforward; some work is needed
under Windows, if GMP is not yet installed; see the details in OWL.

Important: Here, we use the version 1 of yices.
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The yices 1 SAT solver (2/3)

Example

(benchmark test.smt

:extrapreds ((A) (B) (C) (D))

:formula (and

(iff A (and D B))

(implies C B)

(not (or A B (not D)))

(or (and (not A) C) D)

))

produces

sat

(= A false)

(= B false)

(= D true)

(= C false)
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The yices 1 SAT solver (3/3)

Returning to the n queens puzzle for n = 2.

Example

(benchmark test.smt :extrapreds ((A) (B) (C) (D))

:formula (and (and (or A B) (not (and A B)))

(and (or C D) (not (and C D)))

(and (or A D) (not (and A D)))

(and (or C B) (not (and C B)))

(and (not (and A C)) (not (and B D)))

))

produces

unsat
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Conjunctive normal form

Recall

A literal is either a propositional variable or the negation of a propositional
variable.

A clause is a disjunction of literals.

A formula is in conjunctive normal form (CNF), if it is a conjunction of
clauses; for instance:

(p ∨ ¬q ∨ r) ∧ (q ∨ r) ∧ (¬p ∨ ¬q) ∧ r

is a CNF on V = {p, q, r}.

definition

Let V a finite set of Boolean valued variables.

Two clauses C,C ′ on V are equivalent if they have the same truth table; in
this case we write C ↔ C ′.

Similarly, two formulas φ,ψ on V are equivalent if they have the same truth
table; in this case we write φ ↔ ψ.
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Properties of clauses

Recall

Let V a finite set of Boolean valued variables and φ,ψ be propositional formulas
on V . The following properties hold:

commutativity of ∧: φ ∧ ψ ↔ ψ ∧ φ,

commutativity of ∨: φ ∨ ψ ↔ ψ ∨ φ,

absorption of ∧: φ ∧ φ ↔ φ,

absorption of ∨: φ ∨ φ ↔ φ.

Consequences

If a clause C ′ is obtained by reordering the literals of a clause C then the two
clauses are equivalent.

If a clause contains more than one occurrence of the same literal then it is
equivalent to the close obtained by deleting all but one of these occurrences.

From these properties, we can represent a clause as a set of literals, by
making disjunction implicit and by ignoring replication and order of literals;
for instance (p ∨ q ∨ r ∨ ¬r) is represented by the set {p, q, r,¬r}.
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Properties of clauses

Properties

The order of clauses in a CNF formula does not matter; for instance we have:

(a ∨ b) ∧ (c ∨ ¬b) ∧ (¬b) ↔ (c ∨ ¬b) ∧ (¬b) ∧ (a ∨ b).

If a CNF formula contains more than one occurrence of the same clause then
it is equivalent to the formula obtained by deleting all but one of the
duplicated occurrences:

(a ∨ b) ∧ (c ∨ ¬b) ∧ (a ∨ b) ↔ (a ∨ b) ∧ (c ∨ ¬b).

From the properties of clauses and of CNF formulas, we can represent a CNF
formula as a set of sets of literals; for instance: (a ∨ b) ∧ (c ∨ ¬b) ∧ (¬b) is
represented by the set {{a, b},{c,¬b},{¬b}}.
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Conversion to CNF

Proposition

Let V a finite set of Boolean valued variables. Let φ be a formula on V . Then
there exists a CNF formula ψ such that we φ ↔ ψ.

Idea of the proof

The proof by defining a function CNF which turns any formula φ on V into a
CNF formula a ψ.

The function CNF is defined inductively.

We will prove that this definition is well-formed in the sense that it does not
lead to infinitely many recursive calls.

Then, we will prove by structural induction that this function computes
correctly a CNF formula equivalent to the its input argument.

The function CNF essentially follows the rules of Boolean algebra. See
previous lectures or the monotone laws in
https://en.wikipedia.org/wiki/Boolean_algebra.
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The function CNF (1/4)

Let V a finite set of Boolean valued variables. For any two formulas φ,ψ on V
and any Boolean variable p ∈ V , we define:

1 CNF(p) = p
2 CNF(¬p) = ¬p
3 CNF(φ→ ψ) = CNF(¬φ)⊗CNF(ψ)
4 CNF(φ∧ψ) = CNF(φ)∧CNF(ψ)
5 CNF(φ ∨ ψ) = CNF(φ)⊗CNF(ψ)
6 CNF(φ↔ ψ) = CNF(φ→ ψ)∧CNF(ψ → φ)
7 CNF(¬¬φ) = CNF(φ)
8 CNF(¬(φ→ ψ)) = CNF(φ)∧CNF(¬ψ)
9 CNF(¬(φ∧ψ)) = CNF(¬φ)⊗CNF(¬ψ)
10 CNF(¬(φ ∨ ψ)) = CNF(¬φ)∧CNF(¬ψ)
11 CNF(¬(φ↔ ψ) = CNF(φ∧¬ψ)⊗CNF(ψ∧¬φ)

where (C1 ∧ . . . ∧Cn)⊗(D1 ∧⋯ ∧Dm) is defined as
(C1 ∨D1) ∧⋯ ∧ (C1 ∨Dm) ∧⋯ ∧ (Cn ∨D1) ∧⋯ ∧ (Cn ∨Dm) where
C1, . . . ,Cn,D1, . . . ,Dm are clauses.
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The function CNF (2/4)

Remarks

The first two rules can be understood as a base case.

The other nine rules can be understood as the inductive step.

Example

Consider V = {a, b, c, d}. we have:

CNF((a∧b)∨(c∧d)) ↔
CNF(a∧b)⊗CNF(c∧d) ↔
(CNF(a)∧CNF(b))⊗(CNF(c)∧CNF(d)) ↔
(a∧b)⊗(c∧d) ↔
(a∨c)∧(a∨d)∧(b∨c)∧(b∧d)

Lemma

With C1, . . . ,Cn,D1, . . . ,Dm as above, we have

(C1 ∧ . . . ∧Cn)⊗(D1 ∧⋯ ∧Dm) ↔ (C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm).
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The function CNF (3/4)

Proof of the lemma (1/2)

We observe that proving the lemma means that the following equivalence holds:

(C1 ∨D1) ∧⋯ ∧ (C11 ∨Dm) ∧⋯ ∧ (Cn ∨D1) ∧⋯ ∧ (Cn ∨Dm)
↔

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm).
(1)

The proof of Relation (1) can be done by induction on n +m ≥ 2, for all positive
integers n,m.

Base case. That is, n +m = 2, thus n =m = 1. In this case, we have

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm) ↔
(C1) ∨ (D1) ↔
(C1 ∨D1) ∧⋯ ∧ (C11 ∨Dm) ∧⋯ ∧ (Cn ∨D1) ∧⋯ ∧ (Cn ∨Dm)

Step case. Assume tha the property holds for n +m ≥ 2, with positive
integers n,m. We shall prove that it holds for n+ (m+ 1) and (n+ 1)+m as
well. Both cases being similar, we just do one, say n + (m + 1).
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The function CNF (4/4)

Proof of the lemma (1/2)

By associativity of ∧, we have:

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm+1)
↔

(C1 ∧ . . . ∧Cn) ∨ ((D1 ∧⋯ ∧Dm) ∧Dm+1)

By distributivity of ∨ over ∧, we obtain:

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm+1)
↔

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm) ∧ (C1 ∧ . . . ∧Cn) ∨Dm+1

By induction hypothesis, we deduce:

(C1 ∧ . . . ∧Cn) ∨ (D1 ∧⋯ ∧Dm+1)
↔

((C1 ∨D1) ∧⋯ ∧ (C1 ∨Dm) ∧⋯ ∧ (Cn ∨D1) ∧⋯ ∧ (Cn ∨Dm))
∧ ((C11 ∨Dm+1) ∧⋯ ∧ (Cn ∨Dm+1)) .

Finally, we conclude that the desired property holds by associativity and
commutativity of ∧.
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Any call to the function CNF terminates

Proposition

The function CNF terminates for every input formula φ on V .

Proof

We define the complexity of the formula φ, denoted by Complexity(φ), as the
maximal number of nested logical operators ¬,∧,∨ it contains explicitly or
implicitly (when rewriting ↔ and →).

Hence for all p ∈ V , we have Complexity(p) = 0 and Complexity(¬p) = 1.

For all formulas φ,ψ on V , we have:

Complexity(φ ∨ ψ) = Complexity(φ) + Complexity(ψ) + 1,
Complexity(φ→ ψ) = Complexity(¬φ) + Complexity(ψ) + 1,
Complexity(φ↔ ψ) = Complexity(φ→ ψ) + Complexity(ψ → φ) + 1.

The termination of CNF is guaranteed since the complexity of the formula
given in input to all the recursive applications of CNF is always decreasing.

Since the complexity of every formula is finite, then after a finite number of
recursive calls of CNF, the base case is reached.
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The function CNF is correct

Proposition

For an input formula φ on V , the function CNF computes a CNF formula ψ on V ,
such that we have φ ↔ ψ.

Proof

By induction on the definition of the function CNF:

Base case: clearly CNF(φ) is in CNF for the first two rules and we have
φ ↔ CNF(φ).

Step case: Consider the third rule.

By the induction hypothesis, CNF(¬φ) and CNF(ψ) are in
CNF, and respectively equivalent to ¬φ and ψ
Thanks to the above lemma, we deduce:

CNF(¬φ)⊗CNF(ψ) ↔ CNF(¬φ) ∨CNF(ψ) ↔ (¬φ) ∨ψ.

Therefore, we have proved CNF(φ→ ψ) ↔ (¬φ) ∨ ψ.
By induction hypothesis CNF(¬φ) and CNF(ψ) are in CNF.
Therefore, CNF(φ→ ψ) is in CNF as well.
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Conversion to CNF: bad news

Remark

Proceeding as in the proof of the above proposition, the size of the output
formula blows up with respect to the size of the input formula. Consider:

(p1 ∧⋯ ∧ pn) ∨ (q1 ∧⋯ ∧ qm)

will produce nm clauses. In fact, one can prove the following result, given here
without proof.

Proposition

Every CNF equivalent to the formula below has at least 2n − 1 clauses;

(⋯((p1 ↔ p2)↔ p3)⋯↔ pn)
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Dealing with exponential explosion

Example

In the formula
p1↔(p2↔(p3↔(p4↔(p5↔p6))))

replace, the sub-formula (p5↔p6) with a new variable n1, we obtain

p1↔(p2↔(p3↔(p4↔n1))).

Then replacing successively p4↔n1 with n2, p3↔n2 with n3, p2↔n3 with n4,
p1↔n4 with n5, we obtain a CNF formula

n5 ∧ (n5 ↔ (p1↔n4)) ∧ (n4 ↔ (p2↔n3)) ∧ (n3 ↔ (p3↔n2))
∧(n2 ↔ (p4↔n1)) ∧ (n2 ↔ (p5↔p6)).

We shall see this strategy can produce a CNF formula whose size grows linearly
with that of the input formula.
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Equisatisfiability

Definition

Two propositional formulas α and β are equisatisfiable if:

one is satisfiable if and only if the other is satisfiable.

Example

if p and q are two Boolean variables, then p and q are equisatisfiable.

If a, b, n are three Boolean variables, then a ∧ b and (n↔ (a ∧ b)) ∧ n are
equisatisfiable; however, they are not equivalent.
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Conversion to CNF: good news (1/2)

Proposition

For any propositional logic φ on a finite set of Boolean variables V , one can
compute a finite set of Boolean variables V ′ and a propositional logic ψ such that:

V ⊆ V ′ holds,

φ and ψ are equisatisfiable,

the size of ψ (counting connectives and literals) is proportional to the size φ.

Proof and algorithm (1/2)

Step 1: Introduce a new variable pψ for every sub-formula ψ of φ (unless ψ
is a literal)

For instance, if ψ = ψ1 ∧ ψ2, introduce two new variables pψ1

and pψ2 representing ψ1 and ψ2 respectively.

Step 2: Consider each sub-formula ψ = ψ1 ○ ψ2, where ○ is an arbitrary
Boolean connective.

Stipulate that the representative of ψ is equivalent to the
representative of ψ1 ○ ψ2, that is, pψ ↔ pψ1 ○ pψ2 .

Applied Logic for Computer Science An Introduction to SAT Solving UWO – December 3, 2017 29 / 46



Conversion to CNF: good news (1/2)

Proof and algorithm (1/2)

Step 3: Convert pψ ↔ pψ1 ○ pψ2 to CNF using the function CNF defined in
the previous section.

Since pψ ↔ pψ1 ○ pψ2 contains at most three propositional
variables and exactly two connectives, the size of this formula in
CNF is bounded over by a constant.

For the original formula φ, let pφ be its representative and let subf(φ) be the
set of all sub-formulas of φ, including φ itself.
Then the output formula is:

pφ ∧ (⋁ψ1○ψ2∈subf(φ) CNF(pψ ↔ pψ1 ○ pψ2))

This formula is equisatisfiable to φ. Moreover, it is in CNF.
Let n be the size of φ.
The number of elements in subf(φ) is bounded over by n
Since CNF(pψ ↔ pψ1 ○ pψ2) has a size bounded over by a constant, say C, we
deduce that the size of the output formula is in big-oh of C n.
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Tseytins transformation: example (1/2)

Consider the following formula φ ∶= ((p ∨ q) ∧ r)→ (¬s)
Consider all sub-formulas (except the variables themselves):

¬s (2)

p ∨ q (3)

(p ∨ q) ∧ r (4)

((p ∨ q) ∧ r)→ (¬s) (5)

Introduce a new variable for each sub-formula:

x1 ↔ ¬s (6)

x2 ↔ p ∨ q (7)

x3 ↔ x2 ∧ r (8)

x4 ↔ x3 → x1 (9)

Conjunct all substitutions and the substitution for φ:

T (φ) ∶= x4 ∧ (x4 ↔ x3 → x1) ∧ (x3 ↔ x2 ∧ r) ∧ (x2 ↔ p ∨ q) ∧ (x1 ↔ ¬s)
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Tseytins transformation: example (1/2)

All substitutions can be transformed into CNF, e.g.

x2 ↔ p ∨ q ≡ x2 → (p ∨ q) ∧ ((p ∨ q)→ x2) (10)

≡ (¬x2 ∨ p ∨ q) ∧ (¬(p ∨ q) ∨ x2) (11)

≡ (¬x2 ∨ p ∨ q) ∧ ((¬p ∧ ¬q) ∨ x2) (12)

≡ (¬x2 ∨ p ∨ q) ∧ (¬p ∨ x2) ∧ (¬q ∨ x2) (13)

See https://en.wikipedia.org/wiki/Tseytin_transformation for more
details on Tseytins transformation.
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Satisfiability of a CNF formula

Notations

Let C1, . . . ,Cm be clauses over a finite set V of Boolean variables p1, . . . , pn.

Define φ ∶= C1 ∧⋯ ∧Cm.

Let v be an assignment on V .

Remarks

Observations:

1 The CNF formula φ is satisfiable by v if, and only if, the clause Ci, for all
i ∈ {1, . . . ,m}, is satisfiable by v.

2 A clause Ci, for some i ∈ {1, . . . ,m}, is satisfiable by v if, and only if, at least
one of its literals evaluates to true by v.

Consequences:

To check whether or not v satisfies φ, we may not need to know the truth
values of all literals in all clauses.

For instance, if v(p) = true and v(q) = false, we can see that the formula
φ = (p ∨ q ∨ ¬r) ∧ (¬q ∨ s ∨ q) is satisfied without considering v(r) and v(s).
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Partial assignment

Definition

A partial assignment on V is a partial function that associates to some
Boolean variables of V a truth value (either true or false) and can be
undefined for the others.

Under a partial assignment on V , a clause C on V can be
• true if one of its literals is true,
• false (or conflicting) if all its literals are false,
• undefined (or unresolved) if it is neither true not false.

Remarks

Partial assignments allow us to construct assignments for a set of clauses
incrementally, that is, one clause after another.

The SAT solving algorithms to be presented next use partial assignments.

They all start with an empty assignment (that is, the truth values of all
Boolean variables are not defined) and try to extend this assignment,
assigning one Boolean variable after another.
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Simplification of a formula by an evaluated literal (1/2)

Definition

For the CNF formula φ and a Boolean variables p, we denote by φ∣p the formula
obtained from φ by replacing all occurrences of p by true and simplifying the
result by removing:

all true clauses,

all false literals from undefined clauses.

The operation that maps (φ, p) to φ∣p is called the simplification of φ at p.
Similarly, we define φ∣

¬p as the formula obtained from φ by replacing all
occurrences of p by false and simplifying the result by removing:

all true clauses,

all false literals from undefined clauses.

The operation that maps (φ, p) to φ∣
¬p is called the simplification of φ at ¬p.
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Simplification of a formula by an evaluated literal (2/2)

Example

For φ ∶= (p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬r) we have:

φ∣
¬p ↔ q ∨ ¬r.

Proposition

For φ and p as in the above definition, we have:

if φ∣p is satisfiable, then φ is satisfiable too,

if φ∣
¬p is satisfiable, then φ is satisfiable too.

if φ is satisfiable then either φ∣p or φ∣
¬p is satisfiable.

Remarks

The above proposition is a key argument in the SAT solving algorithms to be
presented hereafter.

The proof of this proposition is easy and left as an exercise
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Principles of SAT solving algorithms

Principles

The SAT solving algorithms presented hereafter are based on the following ideas.

1 Each algorithm is stated as a recursive function taking a propositional
formula φ and a partial assignment v as arguments.

2 These functions may modify their arguments:
• the partial assignment can be extended,
• the formula φ can be simplified at the newly assigned literal.

3 Before extending the assignment v and simplifying the formula φ, the
function checks whether φ can be proved to be true or false, whatever are the
values of the remaining unassigned Boolean variables.
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Naive solver (1/3)

Input: A propositional formula φ on a finite set V and a
partial assignment v on V such that only variables
unassigned by v occur in φ.

Output: true if φ is satisfiable, false otherwise.

Naive SAT(φ,v) {
1 if every clause of φ has a true literal, return true;

2 if any clause of φ has all false literals, return false;

3 choose an p ∈ V that is unassigned in v;

4 assign p to true, that is, let v(p) = true;

5 if Naive SAT(φ∣p,v) returns true, then return true; # this is a
recursive call

6 assign p to false, that is, let v(p) = false;

7 if Naive SAT(φ∣
¬p,v) returns true, then return true; # this is

a recursive call

8 unassign v(p); # backtracking takes place here

9 return false; }
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Naive solver (2/3)

Remarks

The function call Naive SAT(φ,v) can terminate early if:

the formula is satisfied before all truth assignments are tested,

all clauses are false before all variables have been assigned.

Proposition

The call Naive SAT(φ,v) terminates for all φ and v.

Proof

We can proceed by induction on the number s of unassigned Boolean variables.
Note that 0 ≤ s ≤ n always holds, where n is the number of Boolean variables in
V .

if s = 0 then no recursive calls happen and termination is clear.

if 0 < s ≤ n, we assume (by induction hypothesis) that the recursive calls
terminate; then Naive SAT(φ,v) clearly terminates as well.
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Naive solver (3/3)

Proposition

The call Naive SAT(φ,v) correctly decides whether φ is satisfiable.

Proof

We can proceed again by induction on the number s of unassigned Boolean
variables. Recall that 0 ≤ s ≤ n always holds, where n is the number of Boolean
variables in V .

if s = 0 then no recursive calls happen and correctness is clear.

Assume 0 < s ≤ n. Assume also, by induction hypothesis, that the recursive
calls are correct.

1 if one of them returns true, say Naive SAT(φ∣p,v), then φ∣p is satisfiable and
therefore so is φ.

2 if none of them returns true, then φ is not satisfiable.

In the first case, Naive SAT(φ,v) correctly returns true.

In the second case, Naive SAT(φ,v) correctly returns false.

Therefore, Naive SAT(φ,v) correctly decides whether φ is satisfiable.
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The pure literal rule

Proposition

Given a propositional CNF formula φ for which we check whether φ is satisfiable
or not, if a variable is always positive (that is, never appears with a ¬) or always
negative (that is, always appears with a ¬) in φ, one only needs to set it to one
value: true for positive variables, false for negative variables. Note that such
variables are called pure.

Proof

Suppose p occurs only as positive literals in φ,

If φ is satisfied by v and v(p) = false, then φ is also satisfied by v′ which is
identical to v except that v′(p) = true.

so we do not need to try v(p) = false.

Remarks

Note that literals may become pure as variables are assigned.

Indeed, as simplification happens, true clauses are removed.

Hence, an unassigned variable which was not pure may become pure.
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Unit propagation

Principle

Unit propagation (a.k.a Boolean constraint propagation or BCP) is a key
component to fast SAT solving.
Whenever all the literals in a clause are false except one, the remaining literal
must be true in any satisfying assignment; such a clause is called a unit clause.
Therefore, the algorithm can assign it to true immediately.
After assigning a variable, there are often many unit clauses.
Setting a literal in a unit clause often creates other unit clauses, leading to a
cascade.
Based on those observations, we define a sub-algorithm BCP as follows.
The input specifications of BCP(φ,v) are the same as Naive SAT(φ,v).
Moreover, similarly to Naive SAT(φ,v), the call BCP(φ,v)may modify its
arguments.

BCP(φ,v)
1 Repeatedly search for unit clauses, and set unassigned literal to required value.
2 If a literal is assigned to a conflicting value, then return false else return true.
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Davis-Putnam-Logemann-Loveland Algorithm (1/2)

Input: A propositional formula φ on a finite set V and a
partial assignment v on V such that only variables
unassigned by v occur in φ.

Output: true if φ is satisfiable, false otherwise.

DPLL(φ,v) {
1 if every clause of φ has a true literal, return true;

2 if any clause of φ has all false literals, return false;

3 if BCP(φ,v) returns false, then return false;

4 choose an p ∈ V that is unassigned in v;

5 assign p to true, that is, let v(p) = true;

6 if DPLL(φ∣p,v) returns true, then return true;

7 assign p to false, that is, let v(p) = false;

8 if DPLL(φ∣
¬p,v) returns true, then return true;

9 unassign v(p); # backtracking takes place here

10 return false; }
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Davis-Putnam-Logemann-Loveland Algorithm (2/2)

Example

See https://en.wikipedia.org/wiki/DPLL_algorithm for a detailed
example.

Remarks

DPLL(φ,v) terminates and is correct for the same reasons as
Naive SAT(φ,v)
Many modern SAT solvers are based on DPLL.
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