CS2209A 2017 Applied Logic for Computer Science

Lecture 5 Propositional Logic: Conditional statements

Instructor: Yu Zhen Xie

The card game

• You see the following cards. Each has a letter on one side and a number on the other.

 Which cards do you need to turn to check that "if a card has a J on it then it has a 5 on the other side"?

"if ... then" in logic

• This puzzle has a logical structure:

"if p then q"

- What circumstances make this **true**? Make this **false**?
 - -p is true and q is true
 - p is true and q is false
 - -p is false and q is true
 - *p* is false and *q* is false

The card game

• You see the following cards. Each has a letter on one side and a number on the other.

- Which cards do you need to turn to check that
 "if a card has a J on it then it has a 5 on the other side"?
- Those having a letter J and those having a number but not 5

Recap: "if and only if"

- "If and only if", iff, \leftrightarrow
 - $A \leftrightarrow B$:
 - $\circ~$ A if and only if B
 - $\circ \quad A \to B \text{ and } B \to A$
 - A and B are either both true or both false
- $(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$

Recap: iff

- $(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$
- Useful fact: proving that *F* ≡ *G* can be done by proving that *F* ↔ *G* is a tautology
- Let $(A \leftrightarrow B)$ be F and $(A \rightarrow B) \land (B \rightarrow A)$ be G

А	В	$A \leftrightarrow B$	$A \rightarrow B$	$B \rightarrow A$	$(A \rightarrow B) \land (B \rightarrow A)$	$F \leftrightarrow G$
True	True	<mark>Ture</mark>	True	True	<mark>True</mark>	<mark>True</mark>
True	False	<mark>False</mark>	False	True	<mark>False</mark>	<mark>True</mark>
False	True	<mark>False</mark>	True	False	<mark>False</mark>	<mark>True</mark>
False	False	<mark>True</mark>	True	True	<mark>True</mark>	<mark>True</mark>

Contrapositive

- Let $A \rightarrow B$ be an **implication** (if A then B).
 - If a card has a J on one side then it has 5 on the other.
- Its contrapositive is $\neg B \rightarrow \neg A$.
 - If a card does not have 5 on one side then it cannot have J on the other.
- Contrapositive is equivalent to the original implication: $(A \rightarrow B) \equiv (\neg B \rightarrow \neg A)$
 - This is why we need to check cards with numbers other than 5

- Proof:
$$\neg B \rightarrow \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A$$

 $\equiv \neg A \lor B \equiv A \rightarrow B$

Converse and Inverse

- Let $A \rightarrow B$ be an **implication** (if A then B).
 - If a card has a J on one side then it has 5 on the other.
- Its converse is $B \rightarrow A$
 - If a card has 5 on one side, then it has J on the other.
- Its inverse is $\neg A \rightarrow \neg B$
 - If a card does not have J on one side, it cannot have 5 on the other.
- Converse is **not equivalent** to the original implication!
 - For A=true, B=false, $A \rightarrow B$ is false, but $B \rightarrow A$ is true.
- Converse is **not equivalent** to the negation of $A \rightarrow B$

- For A=true, B=true, $B \rightarrow A$ is true, but $\neg(A \rightarrow B)$ is false.

• Converse is equivalent to the inverse. Why?

 $-(\neg A \rightarrow \neg B)$ is the **contrapositive** of $(B \rightarrow A)$

More on If and only if

- $A \leftrightarrow B$ ("A if and only if B") is true exactly when both the **implication** $A \rightarrow B$ and its **converse** $B \rightarrow A$ (equivalently, **inverse** $\neg A \rightarrow \neg B$) are true
 - Come to UCC 146 for the tutorial session if and only if you have a time conflict at 3:30pm-4:30pm on Tuesdays.
 - If you have a time conflict at 3:30pm-4:30pm on Tuesdays,
 - then come to NS 1 for the tutorial hour at 9:00pm-10:00pm
 - And if you don't have a time conflict at 3:30pm-4:30pm on Tuesdays,
 - then come to UCC 146 (not to NS 1)

Contrapositive vs. Converse

- "If a person is carrying a weapon, then airport metal detector will ring".
 - Same as "If the airport metal detector does not ring, then the person is not carrying a weapon".
 - Not the same as: "If the airport metal detector rings, then the person is carrying a weapon."
- "If the person is sick, then the test is positive".
- "If he is a murderer, his fingerprints are on the knife".

Proof vs. Disproof

- To prove that something is (always) true:
 - Make sure it holds in every scenario
 - $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, because
 - $\neg B \to \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \to B$
 - So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a **tautology**.
 - I have classes every day that starts with T. I have classes on Tuesday and Thursday (and Monday, but that's irrelevant).
 - Or assume it does not hold, and then get something strange as a consequence:
 - To show A is true, enough to show $\neg A \rightarrow FALSE$.
 - Prove "the number of prime numbers is infinite".
 Suppose there are finitely many prime numbers. What divides the number that's a product of all primes +1?

Proof vs. Disproof

- To disprove that something is always true, enough to give just one scenario where it is false (find a falsifying assignment).
 - To disprove that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \rightarrow B$ is false, but $B \rightarrow A$ is true.
 - To disprove that $B \rightarrow A \equiv \neg (A \rightarrow B)$
 - Take A=true, B=true
 - Then $B \to A$ is true, but $\neg(A \to B)$ is false.
 - I have classes every day! No, you don't have classes on Saturday
 - Women don't do Computer Science! Me?

Treasure hunt

 In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humor and love of logical puzzles. In the note he wrote that he had hidden a treasure somewhere on the property. He listed 5 true statements and challenged the reader to use them to figure out the location of the treasure

Treasure hunt

- 1. If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.