CS2209A 2017 Applied Logic for Computer Science

Lecture 8, 9 **Propositional Logic:**

Conjunctive Normal Form & Disjunctive Normal Form

Instructor: Yu Zhen Xie

Conjunctive Normal Form (CNF)

- Resolution works best when the formula is of the special form: it is an ∧ of ∨s of (possibly negated, ¬) variables (called literals).
- This form is called a **Conjunctive Normal Form**, or **CNF**.
 - $-(y \lor \neg z) \land (\neg y) \land (y \lor z)$ is a CNF
 - $-(x \lor \neg y \lor z)$ is a CNF. So is $(x \land \neg y \land z)$.
 - $-(x \lor \neg y \land z)$ is not a CNF
- An AND (\wedge) of CNF formulas is a CNF formula.
 - So if all premises are CNF and the negation of the conclusion is a CNF, then AND of premises AND NOT conclusion is a CNF.

CNF

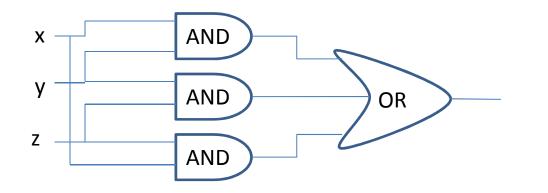
- To convert a formula into a CNF.
 - Open up the implications to get ORs.
 - Get rid of double negations.
 - Convert $F \lor (G \land H)$ to $(F \lor G) \land (F \lor H)$ //distributivity
- Example: $A \rightarrow (B \land C)$ $\equiv \neg A \lor (B \land C)$ $\equiv (\neg A \lor B) \land (\neg A \lor C)$
- In general, CNF can become quite big, especially when have ↔. There are tricks to avoid that ...

Boolean functions and circuits

- What is the relation between **propositional logic** and **logic circuits**?
 - View a formula as computing a function (called a Boolean function),
 - inputs are values of variables,
 - output is either *true (1)* or *false (0)*.
 - For example, Majority(x, y, z) = true when at least two out of x, y, z are true, and false otherwise.
 - Such a function is fully described by a truth table of its formula (or its circuit: circuits have truth tables too).

Boolean functions and circuits

- What is the relation between propositional logic and logic circuits?
 - So both formulas and circuits "compute" Boolean functions that is, truth tables.
 - In a circuit, can "reuse" a piece in several places, so a circuit can be smaller than a formula.
 - Still, most circuits are big!
 - -Majority(x, y, z) is $(x \land y) \lor (x \land z) \lor (y \land z)$



CNF and DNF

- Every truth table (Boolean function) can be written as either a conjunctive normal form (CNF) or disjunctive normal form (DNF)
- CNF is an A of Vs, where V is over variables or their negations (literals); an V of literals is also called a clause.
- DNF is an ∨ of ∧s; an ∧ of literals is called a term.

Notations

- $\neg p, x, s$ are examples of literals
- Neither $\neg \neg p$ nor $(x \lor y)$ is a literal
- $(x \lor \neg y \lor z), (\neg p)$ are clause

•
$$(x \land \neg y \land z)$$
, $(\neg p)$ are terms

- $(x \lor \neg z \lor y) \land (\neg x \lor \neg y) \land (\neg y)$ is a CNF
- $(x \land z) \lor (\neg y \land z \land x) \lor (\neg x \land z)$ is a DNF
- $(x \land \neg (y \lor z) \lor u)$ is neither a CNF nor DNF, but is equivalent to DNF $((x \land \neg y \land \neg z) \lor u)$

Facts about CNF and DNF

- Any propositional formula is tautologically equivalent to some formula in disjunctive normal form.
- Any propositional formula is tautologically equivalent to some formula in conjunctive normal form.

Why CNF and DNF?

- Convenient normal forms
- Resolution works best for formulas in CNF
- Useful for constructing formulas given a truth table
 - **DNF**: take a disjunction (that is, V) of all satisfying truth assignments
 - CNF: take a conjunction (A) of negations of falsifying truth assignments

From truth table to DNF and CNF

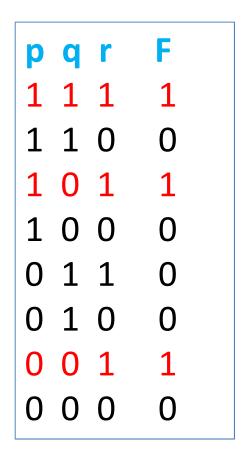
- A **minterm** is a conjunction of literals in which each variable is represented exactly once
 - If a Boolean function (truth table) has the variables (p,q,r) then $p \land \neg q \land r$ is a minterm but $p \land \neg q$ is not.
- Each minterm is true for exactly one assignment.
 - $-p \wedge \neg q \wedge r$ is true if p is true (1), q is false (0) and r is true (1).
 - Any deviation from this assignment would make this particular minterm false.
- A disjunction of minterms is true only if at least one of its constituents minterms is true.

From truth table to DNF

- If a function, e.g. F, is given by a truth table, we know exactly for which assignments it is true.
- Consequently, we can select the minterms that make the function true and form the disjunction of these minterms.
- **F** is true for three assignments:

○ p, q, r are all true, $(p \land q \land r)$ ○ p, ¬q, r are all true, $(p \land ¬q \land r)$ ○ ¬p, ¬q, r are all true, $(¬p \land ¬q \land r)$

• **DNF of F**: $(p \land q \land r) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q \land r)$



From truth table to CNF

- Complementation can be used to obtain conjunctive normal forms from truth tables.
- If A is a formula containing only the connectives ¬,
 ∨ and ∧ , then its complement is formed by
 - replacing all V by Λ
 - replacing all \land by \lor
 - replacing all atoms by their complements.
 - The complement of q is $\neg q$
 - The complement of $\neg q$ is q
- Example: Find the complement of the formula
 - (p ∧ q) ∨ ¬ r
 (¬ p ∨ ¬ q) ∧ r

From truth table to CNF

Solution: ¬G is true for the following assignments.

p = 1; q = 0; r = 1
p = 1; q = 0; r = 0
p = 0; q = 0; r = 1

The DNF of ¬G is therefore:

 $(p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r)$

• The formula has the complement:

 $(\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor q \lor \neg r)$

It is the desired CNF of G

р	q	r	G
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	1

Canonical CNF and DNF

- So for every formula, there is a unique **canonical CNF** (and a truth table, and a Boolean function).
- And for every possible truth table (a Boolean function), there is a formula (the canonical CNF).
- Recall, to make a **canonical DNF** from a truth table:
 - Take all satisfying assignments.
 - Write each as an AND of literals, as before.
 - Then take an OR of these ANDs.

Complete set of connectives

 CNFs only have ¬,∨,∧, yet any formula can be converted into a CNF

- Any truth table can be coded as a CNF

- Call a set of connectives which can be used to express any formula a complete set of connectives.
 - In fact, \neg , \lor is already complete. So is \neg , \land .
 - By DeMorgan, $(A \lor B) \equiv \neg(\neg A \land \neg B)$ No need for $\lor!$
 - But Λ ,V is not: cannot do \neg with just Λ ,V.
 - Because when both inputs have the same value, both ∧,∨ leave them unchanged.

Complete set of connectives

- How many connectives is enough?
 - Just one: NAND (NotAND), also called the Sheffer stroke, written as

$$- \neg A \equiv A \mid A$$

$$-A \lor B \equiv \neg(\neg A \land \neg B)$$
$$\equiv (\neg A \mid \neg B)$$
$$\equiv ((A \mid A) \mid (B \mid B))$$

Α	В	A B
True	True	False
True	False	True
False	True	True
False	False	True

– In practice, most often stick to Λ, V, \neg

Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

- 1. a kindergarden teacher
- 2. works in a bookstore and takes yoga classes
- 3. an active feminist
- 4. a psychiatric social worker
- 5. a member of an outdoors club
- 6. a bank teller
- 7. an insurance salesperson
- 8. a bank teller and an active feminist

