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Tutorial #3

Problem 1 Professor Cuthbert Calculus has designed a machine which con-
sists of three components A, B, C which are either running or stopped. The
constraints on those components are the following:

1. if A is running, then at least one of the components B or C is stopped,
2. if B is stopped, then at least one of the components A or C is running,
3. if C is running, then B is running as well.

Can the machine of Professor Cuthbert Calculus be built, that is, is the
conjunction of the above three statements satisfiable. Justify your answer.

Solution 1 Let us denote by A, B, C Boolean variables stating that the
respective components A, B, C are running. Then the 3 constraints can be
rephrased as follows in propositional logic:

1. A → (¬B ∨ ¬C),
2. ¬B → (A ∨ C),
3. C → B.

Because of the third constraint, namely C → B, it is natural to test whether
the conjunction of the three constraints is satisfiable with B = C = true.
Then, since ¬B ∨ ¬C = false, to satisfy the first constraint, we must have
A = false. With those values of the Boolean variables A, B, C, the second
constraint is satisfied. Therefore, the the machine of Professor Cuthbert
Calculus be built.

Problem 2 Prove that log2(9) is irrational.

Solution 2 if log2(9) were equal to m
n , with m,n positive integers, without

common factors, then, by the definition of logarithms, we would have

2
m
n = 9.

Raising both sides to the n-th power, we obtain:

2m = 9n.

Since n and m are non-zero, the numbers 9n and 2m are greater or equal to
9 and 2, respectively. Moreover, the numbers 9n and 2m are odd and even,
respectively. Since a number cannot be both even and odd, the numbers 9n

and 2m cannot be equal and we have reached a contradiction. Therefore,
the number log2(9) is irrational.
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Problem 3 Let p, q, r, s be Boolean variables. For each of the following
propositions, determine whether it is satisfiable or not :

1. (p∨(q∧(q∨s)) ∧ (¬p∨(¬q∧(¬q∨r)) ∧ (p∨s) ∧ (¬p∨r).
2. (p∨(q∧(q∨s)) ∧ (¬p∨(¬q∧(¬q∨r)) ∧ (p∨¬q) ∧ (¬p∨q)

Solution 3
1. Using the absorption laws, the sub-expression (q∧(q∨s)) can simply

be rewritten as q and the sub-expression (¬q∧(¬q∨r)) can simply be
rewritten as ¬q. Therefore, the entire proposition becomes

(p∨q) ∧ (¬p∨¬q) ∧ (p∨s) ∧ (¬p∨r).

Let us look first at (p∨q) ∧ (¬p∨¬q). Both (p∨q) and (¬p∨¬q) are true
if and only if p and q have opposite truth values. (This can be verified
with a truth table.) Assume we choose p = true and q = false. Then
(p∨s) is true whatever is the truth value of s, meanwhile satisfying
(¬p∨r) requires to set r = true. Finally, we can conclude that the
entire proposition is satisfied with p = true, q = false and r = true.

2. Here again, (q∧(q∨s)) can simply be rewritten as q and (¬q∧(¬q∨r))
can simply be rewritten as ¬q. And the entire proposition becomes

(p∨q) ∧ (¬p∨¬q) ∧ (p∨¬q) ∧ (¬p∨q).

Remember that (p∨q) ∧ (¬p∨¬q) means p↔ ¬q, that is, p and q have
opposite truth values. Similarly, the sub-expression (p∨¬q) ∧ (¬p∨q)
means that p and q have the same truth values, that is, p↔ q. There-
fore, the entire proposition becomes

(p↔ ¬q) ∧ (p↔ q),

which is clearly false. Finally, we can conclude that the entire propo-
sition cannot be satisfied.

Problem 4 For any real number x, the absolute value of x, denoted by |x|,
is defined as follows:

|x| =
{

x, if x ≥ 0
−x, if x < 0.

Prove that for all real numbers a, b, the following properties hold:
1. |a + b| ≤ |a|+ |b| (called the triangular inequality),
2. |a− b| ≥

∣∣ |a| − |b| ∣∣ (called the reverse triangular inequality),
3. if b is non-negative then we have: |a| ≤ b ⇐⇒ −b ≤ a ≤ b.

Solution 4

2



1. Let a, b be two real numbers. We consider 4 cases
• Case 1: a ≥ 0 and b ≥ 0. Then a + b ≥ 0 and we have:

|a + b| = a + b = |a|+ |b|.
• Case 2: a < 0 and b ≥ 0. In this case a + b = −|a|+ b and thus

the sign of a + b depends on whether |a| ≤ b or |a| > b holds. If
|a| ≤ b holds, then a + b ≥ 0 and we have:

|a + b| = −|a|+ b ≤ |a|+ b = |a|+ |b|.
If |a| > b holds, then a + b < 0 and we have:

|a + b| = |a| − b ≤ |a|+ b = |a|+ |b|.
• Case 3: a ≥ 0 and b < 0. This case is simply deduced from the

previous one by exchanging the role of a and b.
• Case 4: a < 0 and b < 0. Then a + b < 0 and we have:

|a + b| = −(a + b) = −|a| − |b| ≤ |a|+ |b|.
QED. It should be noted, as pointed by one student in class, that
other formulas about absolute values can be used to avoid the case
discussion. These formulas are

√
a2 = |a| and |a× b| = |a| × |b|.

Since ab ≤ |a× b| and |a× b| = |a| × |b| both hold, we deduce:

2ab ≤ 2|a| × |b|,

and thus
a2 + 2ab + b2 ≤ |a|2 + 2|a| × |b|+ |b|2,

leading to
(a + b)2 ≤ (|a|+ |b|)2.

Taking the square-root of each side yields:√
(a + b)2 ≤

√
(|a|+ |b|)2,

that is,
|a + b| ≤ ||a|+ |b|| = |a|+ |b|.

2. Let a, b be two real numbers. One could proceed again by case inspec-
tion, discussing whether a − b is non-negative or not, and discussing
whether |a| − |b| is non-negative or not. But there is a faster way, by
applying the triangular inequality twice:
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• From a = (a− b) + b, we deduce

|a| ≤ |a− b|+ |b|,

and thus
|a| − |b| ≤ |a− b|.

• From −b = (a − b) + (−a) and |a| = | − a| and |b| = | − b|, we
deduce

|b| ≤ |a− b|+ |a|,

and thus
|b| − |a| ≤ |a− b|.

From |a| − |b| ≤ |a− b| and |b| − |a| ≤ |a− b|, we deduce∣∣ |a| − |b| ∣∣ ≤ |a− b|

Indeed,
∣∣ |a| − |b| ∣∣ is equal to either |a| − |b| or |b| − |a|. QED.

3. Let a, b be two real numbers. We have the following equivalences:

|a| ≤ b ⇐⇒ (a ≥ 0 ∧ |a| ≤ b) ∨ (a < 0 ∧ |a| ≤ b)
⇐⇒ (a ≥ 0 ∧ a ≤ b) ∨ (a < 0 ∧ −a ≤ b)
⇐⇒ (a ≥ 0 ∧ a ≤ b) ∨ (a < 0 ∧ −b ≤ a)
⇐⇒ (a ≥ 0 ∧ −b ≤ a ≤ b) ∨ (a < 0 ∧ −b ≤ a ≤ b)
⇐⇒ −b ≤ a ≤ b

Indeed, for the second last equivalence, we can replace (a ≥ 0∧ a ≤ b)
with (a ≥ 0 ∧ −b ≤ a ≤ b) since we know that b ≥ 0 holds anyway.
Similarly, we can replace (a < 0 ∧ −b ≤ a) with (a < 0 ∧ −b ≤ a ≤ b)
for the same reason. QED. Of course, we can also prove the property

|a| ≤ b ⇐⇒ −b ≤ a ≤ b

by case inspection, discussing a ≥ 0 or a < 0.
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