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Tutorial #3

Problem 1 Professor Cuthbert Calculus has designed a machine which con-
sists of three components A, B, C' which are either running or stopped. The
constraints on those components are the following:
1. if A is running, then at least one of the components B or C' is stopped,
2. if B is stopped, then at least one of the components A or C'is running,
3. if C is running, then B is running as well.
Can the machine of Professor Cuthbert Calculus be built, that is, is the
conjunction of the above three statements satisfiable. Justify your answer.

Solution 1 Let us denote by A, B, C' Boolean variables stating that the
respective components A, B, C' are running. Then the 3 constraints can be
rephrased as follows in propositional logic:

1. A - (=Bv-0),

2. B — (Av(O),

3. C —» B.
Because of the third constraint, namely C — B, it is natural to test whether
the conjunction of the three constraints is satisfiable with B = C' = true.
Then, since =B V —C' = false, to satisfy the first constraint, we must have
A = false. With those values of the Boolean variables A, B, C, the second
constraint is satisfied. Therefore, the the machine of Professor Cuthbert
Calculus be built.

Problem 2 Prove that log,(9) is irrational.

Solution 2 if logy(9) were equal to 7, with m, n positive integers, without
common factors, then, by the definition of logarithms, we would have
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2n =0.

Raising both sides to the n-th power, we obtain:
2m =9",

Since n and m are non-zero, the numbers 9" and 2" are greater or equal to
9 and 2, respectively. Moreover, the numbers 9" and 2" are odd and even,
respectively. Since a number cannot be both even and odd, the numbers 9"
and 2™ cannot be equal and we have reached a contradiction. Therefore,
the number log,(9) is irrational.



Problem 3 Let p,q,7,s be Boolean variables. For each of the following
propositions, determine whether it is satisfiable or not :

L (pv(gA(gVs)) A (=pV(=gA(=gvr)) A (pVs) A (=pVr).

2. (pV(gN(gVs)) A (=pV(mgA(—qVr)) A (pV-g) A (—pVa)

Solution 3
1. Using the absorption laws, the sub-expression (gA(qVs)) can simply
be rewritten as ¢ and the sub-expression (—gA(—¢Vr)) can simply be
rewritten as —g. Therefore, the entire proposition becomes

(pva) A (=pv=q) A (pVs) A (-pVr).

Let us look first at (pVgq) A (—pV—q). Both (pVgq) and (—pV—q) are true
if and only if p and ¢ have opposite truth values. (This can be verified
with a truth table.) Assume we choose p = true and ¢ = false. Then
(pVs) is true whatever is the truth value of s, meanwhile satisfying
(=pVr) requires to set r = true. Finally, we can conclude that the
entire proposition is satisfied with p = true, ¢ = false and r = true.

2. Here again, (gA(¢Vs)) can simply be rewritten as ¢ and (=gA(—gVr))
can simply be rewritten as —¢. And the entire proposition becomes

(pvg) A (=pv=q) A (pV—q) A (=pVg).

Remember that (pVq) A (-pV—q) means p <> ¢, that is, p and ¢ have
opposite truth values. Similarly, the sub-expression (pV—q) A (—pVq)
means that p and g have the same truth values, that is, p > q. There-
fore, the entire proposition becomes

(P N (peq),
which is clearly false. Finally, we can conclude that the entire propo-

sition cannot be satisfied.

Problem 4 For any real number z, the absolute value of z, denoted by |z,
is defined as follows:
m_{ xz, ifx>0

—x, if x <O.

Prove that for all real numbers a, b, the following properties hold:
1. |a+b| < |a| 4 |b] (called the triangular inequality),
2. |la—b| > ‘ la|] — 19| ‘ (called the reverse triangular inequality),
3. if b is non-negative then we have: |a| <b <= —b<a <b.

Solution 4



1. Let a,b be two real numbers. We consider 4 cases
e Case 1: a>0and b> 0. Then a + b > 0 and we have:

la +bl =a+b=|al + |b].

e Case 2: a <0 and b > 0. In this case a + b= —|a| + b and thus
the sign of a + b depends on whether |a| < b or |a| > b holds. If
la| < b holds, then a4+ b > 0 and we have:

la+ 0] = —|a| +b < [a] + b= |a] + [b].
If |a] > b holds, then a + b < 0 and we have:
la+b] = la| = b < a] + b= |a] + [b].

e Case 3: a > 0 and b < 0. This case is simply deduced from the
previous one by exchanging the role of a and b.
e Case 4: a <0 and b < 0. Then a + b < 0 and we have:

la+b] = —(a+b) = —|a| = [b] < |a] + [b].

QED. It should be noted, as pointed by one student in class, that
other formulas about absolute values can be used to avoid the case
discussion. These formulas are

Va2 = |a| and |a x b] = |a| x |b].
Since ab < |a x b| and |a x b| = |a| x |b| both hold, we deduce:
2ab < 2|a| x |b],

and thus
a® 4 2ab + % < |a|* 4 2|a| x |b| + |b]?,

leading to
(a+b)* < (la| + [b])*.

Taking the square-root of each side yields:
(a+0)> < /(lal + [o])?,

| +b] < |laf + [b]] = |a] + [b].

that is,

2. Let a, b be two real numbers. One could proceed again by case inspec-
tion, discussing whether a — b is non-negative or not, and discussing
whether |a| — |b| is non-negative or not. But there is a faster way, by
applying the triangular inequality twice:



e From a = (a — b) + b, we deduce

lal < la — b+ b,

and thus
la] = [b] < |a —b].
e From —b = (a —b) + (—a) and |a|] = | — a| and [b| = | — b, we
deduce
[b] < la —b] + |al,
and thus

[b] = laf <'la —b].

From |a| — |b| < |a —b| and |b] — |a| < |a — b|, we deduce
[lal =[] < |a —b|

Indeed, | |a| — |b] | is equal to either |a| — |b| or [b] — |a|. QED.
. Let a, b be two real numbers. We have the following equivalences:

la| <b (@a>0Alal <b) V (a<0A]a|l <b)
(a> <b) V (a<0A—-a<D)
(@a>0ANa<b) V (a<0A—-b<a)
( <b

aEO/\—bga )V (a<0A-=b<a<hb)

11717

Indeed, for the second last equivalence, we can replace (a > 0Aa < b)
with (& > 0 A —b < a < b) since we know that b > 0 holds anyway.
Similarly, we can replace (a < 0A —b < a) with (a <0A —b<a <b)
for the same reason. QED. Of course, we can also prove the property

la] <b <«<— —-b<a<b

by case inspection, discussing a > 0 or a < 0.



