Format of the submission. You must submit a single file which must be in PDF format. All other formats (text or Microsoft word format) will be ignored and considered as null. You are strongly encouraged to type your solutions using a text editor. To this end, we suggest the following options:

1. Microsoft word and convert your document to PDF
2. the typesetting system \LaTeX; see https://www.latex-project.org/ and https://en.wikipedia.org/wiki/LaTeX#Example to learn about \LaTeX; see https://www.tug.org/begin.html to get started
3. using a software tool for typing mathematical symbols, for instance http://math.typeit.org/
4. using a Handwriting recognition system such as those equipping tablet PCs

Hand-writing and scanning your answers is allowed but not encouraged:

1. if you go this route please use a scanning printer and do not take a picture of your answers with your phone,
2. if the quality of the obtained PDF is too poor, your submission will be ignored and considered as null.

Problem 1 (Functions and matrices) \[30\text{marks}] Consider the set of ordered pairs \((x, y)\) where \(x\) are \(y\) are real numbers. Such a pair can be seen as a point in the plane equipped with Cartesian coordinates \((x, y)\).

1. For each of the following functions \(F_1, F_2, F_3, F_4\), determine a \((2 \times 2)\)-matrix \(A\) so that the point of coordinates \((x, y)\) is sent to the point \((x', y')\) when we have

\[
\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}
\]

(1)

where

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\]

(2)

(a) \(F_1(x, y) = (2y, 3x)\)
(b) \(F_2(x, y) = (0, 0) \)
(c) \(F_3(x, y) = (y, y) \)
(d) \(F_4(x, y) = (y + x, y - x) \)

2. Determine which of the above functions \(F_1, F_2, F_3, F_4 \) is injective? surjective? Justify your answer.

Solution 1
1. \(A = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \). If \((2y_1, 3x_1) = (2y_2, 3x_2)\) holds then we have \((x_1, y_1) = (x_2, y_2)\), hence \(F_1 \) is injective. \(F_1 \) is also surjective since we have \(F_1^{-1}(x', y') = \left(\frac{x'}{3}, \frac{y'}{2} \right) \).

2. \(A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \). Since \(F_2 \) maps every point \((x, y)\) to \((0, 0)\), it is clear that \(F_2 \) is neither injective, nor surjective.

3. \(A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \). Since every point of the form \((x, 0)\) is mapped to \((0, 0)\), it is clear that \(F_3 \) is not injective. Since \((1, 2)\) cannot have a pre-image by \(F_3 \), it is clear that \(F_3 \) is not surjective either.

4. \(A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \). If \((y_1 + x_1, y_1 - x_1) = (y_2 + x_2, y_2 - x_2)\) holds, we have
\[
y_1 + x_1 = y_2 + x_2 \quad \text{and} \quad y_1 - x_1 = y_2 - x_2.
\]
Adding these two equations side by side yields \(2y_1 = 2y_2\) and thus \(y_1 = y_2\). Subtracting them side by side yields \(2x_1 = 2x_2\) and thus \(x_1 = x_2\). Therefore, we have proved that \(F_4(x_1, y_1) = F_4(x_2, y_2) \) implies \((x_1, y_1) = (x_2, y_2)\), hence \(F_4 \) is injective. \(F_4 \) is also surjective since we have \(F_4^{-1}(x', y') = \left(\frac{x' - y'}{2}, \frac{x' + y'}{2} \right) \).

Problem 2 (Chinese Remaindering Theorem) [20 marks] Let \(m \) and \(n \) be two relatively prime integers. Let \(s, t \in \mathbb{Z} \) be such that \(sm + tn = 1 \). The Chinese Remaindering Theorem states that for every \(a, b \in \mathbb{Z} \) there exists \(c \in \mathbb{Z} \) such that
\[
(\forall x \in \mathbb{Z}) \quad \begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases} \iff x \equiv c \mod mn \quad (3)
\]
where a convenient \(c \) is given by
\[
c = a + (b - a) sm = b + (a - b) tn. \quad (4)
\]
1. Prove that the above \(c \) satisfies both \(c \equiv a \mod m \) and \(c \equiv b \mod n \).
2. Let \(x \in \mathbb{Z} \). Prove that if \(x \equiv c \mod mn \) holds then \(x \equiv a \mod m \) and \(x \equiv b \mod n \) both hold as well.

3. Let \(x \in \mathbb{Z} \). Prove that if both \(x \equiv a \mod m \) and \(x \equiv b \mod n \) hold then so does \(x \equiv c \mod mn \).

Solution 2

1. Observe that Relation (4) implies

\[
 c \equiv a \mod m \quad \text{and} \quad c \equiv b \mod n. \tag{5}
\]

2. Assume that \(x \equiv c \mod mn \) holds. This implies

\[
 x \equiv c \mod m \quad \text{and} \quad x \equiv c \mod n \tag{6}
\]

Thus Relations (5) and (6) lead to

\[
 x \equiv a \mod m \quad \text{and} \quad x \equiv b \mod n \tag{7}
\]

3. Conversely

- \(x \equiv a \mod m \) implies \(x \equiv c \mod m \) that is \(m \) divides \(x - c \) and
- \(x \equiv b \mod n \) implies \(x \equiv c \mod n \) that is \(n \) divides \(x - c \).

Since \(m \) and \(n \) are relatively prime it follows that \(mn \) divides \(x - c \).

Problem 3 (Solving congruences) [30 marks]

1. Find all integers \(x \) such that \(0 \leq x < 77 \) and \(5x + 9 = 10 \mod 77 \). Justify your answer.

2. Find all integers \(x \) such that \(0 \leq x < 77 \), \(x \equiv 2 \mod 7 \) and \(x \equiv 3 \mod 11 \). Justify your answer.

3. Find all integers \(x \) and \(y \) such that \(0 \leq x < 77 \), \(0 \leq y < 77 \), \(x + y = 33 \mod 77 \) and \(x - y = 10 \mod 77 \). Justify your answer.

Solution 3

1. \(x = 31 \mod 77 \).

2. \(x = 58 \mod 77 \).

3. \(x = 60 \mod 77 \) and \(y = 50 \mod 77 \).

Problem 4 (RSA) [20 marks] Let us consider an RSA Public Key Crypto System. Alice selects 2 prime numbers: \(p = 5 \) and \(q = 11 \). Alice selects her public exponent \(e = 3 \) and sends it to Bob. Bob wants to send the message \(M = 4 \) to Alice.

1. Compute the product \(n = pq \) and \(\Phi(n) \)
2. Is this choice for of e valid here?
3. Compute d, the private exponent of Alice.
4. Encrypt the plain-text M using Alice public exponent. What is the resulting cipher-text C?
5. Verify that Alice can obtain M from C, using her private decryption exponent.

Solution 4

1. We have $n = pq = 55$ and $\Psi(n) = (p - 1)(q - 1) = 4 \times 10 = 40$.
2. We have $\gcd(3, 40) = 1$, hence $e = 3$ is a valid choice (note that 3 is a prime number, any way).
3. Alice private exponent d satisfies $de \equiv 1 \pmod{\Psi(n)}$, hence $3d = 1 \pmod{40}$, which gives $d = 27$ since $3 \times 27 = 81 = 1 + 2 \times 40$.
4. Bob send: $C = M^e \pmod{n} = 4^3 \pmod{55} = 64 \pmod{55} = 9$.
5. Alice receives C and computes $C^d \pmod{n} = 9^{27} \pmod{55} = 4$.