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Linear congruences

Definition
A congruence of the form ax ≡ b (mod m), where m is a positive
integer, a and b are integers, and x is a variable, is called a linear
congruence.

The solutions to a linear congruence ax ≡ b (mod m)
are all integers x that satisfy the congruence.

Definition
An integer a such that aa ≡ 1 (mod m) is said to be an inverse of
a modulo m.

Example

5 is an inverse of 3 modulo 7 since 5 ⋅ 3 = 15 ≡ 1 (mod 7)
One method of solving linear congruences makes use of an inverse
a, if it exists. Although we can not divide both sides of the
congruence by a, we can multiply by a to solve for x . Indeed, we
have:

ax ≡ b (mod m)→ aax ≡ ab (mod m)→ x ≡ ab (mod m)
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Computing the inverse of a modulo m
The following theorem guarantees that an inverse of a modulo m
exists whenever a and m are relatively prime, that is when
gcd(a,m) = 1.

Theorem
If a and m are relatively prime integers and m > 1, then an inverse
of a modulo m exists.

Furthermore, this inverse is unique modulo
m (that is, there is a unique positive integer a less than m that is
an inverse of a modulo m).

Proof.
Since gcd(a,m) = 1, by Bézout’s Theorem, there are integers s and
t such that sa + tm = 1.

1 Hence, tm = 1− sa.

2 Therefore, m divides 1 − sa

3 According to the definition of congruence, sa ≡ 1 (mod m)
4 Consequently, s is an inverse of a modulo m.

5 The uniqueness of the inverse is proved in Tutorial 7.

∎
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Computing inverses

The (extended) Euclidean algorithm and Bézout coefficients gives
us a systematic approaches to finding inverses.

Example

Find an inverse of 3 modulo 7.

Solution: Because gcd(3,7) = 1, an inverse of 3 modulo 7 exists.

1 Simply using the division algorithm: 7 = 2 ⋅ 3 + 1.

2 From this equation, we get −2 ⋅ 3 + 1 ⋅ 7 = 1.

3 That is, −2 and 1 are Bézout coefficients of 3 and 7.

4 Hence, −2 ⋅ 3 ≡ 1 (mod 7) and −2 is an inverse of 3 modulo 7.

5 Also every integer congruent to −2 modulo 7 is an inverse of 3
modulo 7, i.e., 5, −9,12, etc.
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Computing inverses

Find an inverse of 101 modulo 4620.

1 First use the Euclidean algorithm to show gcd(101,4620) = 1.

2 Second, working backwards to find Bézout coefficients.

1 2 = 2 ⋅ 1
Since the last nonzero
remainder is 1,
gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2

a Bézout coefficients for 4620 and
101 are: −35 and 1601

b 1601 is an inverse of 101 modulo
4620

c Also, -35 is an inverse of 4620
modulo 101
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1 4620 = 45 ⋅101+75

2 2 = 2 ⋅ 1
Since the last nonzero
remainder is 1,
gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2
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1 4620 = 45 ⋅101+75

2 101 = 1 ⋅ 75 + 26

3 75 = 2 ⋅ 26 + 23

4 26 = 1 ⋅ 23 + 3

5 23 = 7 ⋅ 3 + 2

6 3 = 1 ⋅ 2 + 1

7 2 = 2 ⋅ 1
Since the last nonzero
remainder is 1,
gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2
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1 4620 = 45 ⋅101+75

2 101 = 1 ⋅ 75 + 26

3 75 = 2 ⋅ 26 + 23

4 26 = 1 ⋅ 23 + 3

5 23 = 7 ⋅ 3 + 2

6 3 = 1 ⋅ 2 + 1

7 2 = 2 ⋅ 1
Since the last nonzero
remainder is 1,
gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2
9 1 = 3 − 1 ⋅ (23 − 7 ⋅ 3) = −1 ⋅ 23 + 8 ⋅ 3
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gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2
9 1 = 3 − 1 ⋅ (23 − 7 ⋅ 3) = −1 ⋅ 23 + 8 ⋅ 3
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c Also, -35 is an inverse of 4620
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1 4620 = 45 ⋅101+75

2 101 = 1 ⋅ 75 + 26

3 75 = 2 ⋅ 26 + 23

4 26 = 1 ⋅ 23 + 3

5 23 = 7 ⋅ 3 + 2

6 3 = 1 ⋅ 2 + 1

7 2 = 2 ⋅ 1
Since the last nonzero
remainder is 1,
gcd(101,4260) = 1

8 1 = 3 − 1 ⋅ 2
9 1 = 3 − 1 ⋅ (23 − 7 ⋅ 3) = −1 ⋅ 23 + 8 ⋅ 3

10 1 = −1⋅23+8⋅(26−1⋅23) = 8⋅26−9⋅23

11 1 = 8⋅26−9⋅(75−2⋅26) = 26⋅26−9⋅75

12 1 = 26 ⋅ (101 − 1 ⋅ 75) − 9 ⋅ 75

= 26 ⋅ 101 − 35 ⋅ 75

13 1 = 26 ⋅ 101 − 35 ⋅ (4620 − 45 ⋅ 101)
= −35 ⋅ 4620 + 1601 ⋅ 101
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Using inverses to solve congruences

We solve the congruence ax ≡ b (mod m) by multiplying both
sides by a.

Example

What are the solutions of 3x ≡ 4 (mod 7) ?

Solution:

1 First, gcd(3,7) = 1 and we found that −2 is an inverse of 3
modulo 7 (two slides back).

2 We multiply both sides of the congruence by −2 giving
−2 ⋅ 3x ≡ −2 ⋅ 4 (mod 7).

3 Because −6 ≡ 1 (mod 7), it follows that if x is a solution then
x ≡ −8 (mod 7) or x ≡ 6 (mod 7) since 6 ≡ −8 (mod 7)

4 To verify this solution, assume arbitrary x s.t. x ≡ 6 (mod 7).
It follows that 3x ≡ 3 ⋅ 6 ≡ 18 ≡ 4 (mod 7) which shows that all
such x satisfy the congruence above.

5 The solutions are the integers x such that x ≡ 6 (mod 7),
namely, 6,13,20 . . . and −1,−8,−15 . . .
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The Chinese Remainder Theorem

Theorem
Let m and n be two relatively prime integers. Let s, t ∈ Z be such
that s m + t n = 1.

The Chinese Remaindering Theorem states that
for every a,b ∈ Z there exists c ∈ Z such that

(∀x ∈ Z) { x ≡ a mod m
x ≡ b mod n

⇐⇒ x ≡ c mod mn (1)

where a convenient c is given by

c = a + (b − a) s m = b + (a − b)t n. (2)
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The Chinese Remainder Theorem
Proof.

1 We first check that the above c satisfies both c ≡ a mod m
and c ≡ b mod n.

a Observe that Relation (2) implies

c ≡ a mod m and c ≡ b mod n. (3)

2 Assume that x ≡ c mod mn holds. This implies

x ≡ c mod m and x ≡ c mod n (4)

Thus Relations (3) and (4) lead to

x ≡ a mod m and x ≡ b mod n (5)

3 Conversely
▸ x ≡ a mod m implies x ≡ c mod m that is m divides x − c and
▸ x ≡ b mod n implies x ≡ c mod n that is n divides x − c .

Since m and n are relatively prime it follows that mn divides
x − c .

∎
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The Chinese Remainder Theorem

Find all integers x such that 0 ≤ x < 15, x ≡ 1 mod 3 and x ≡ 2
mod 5.

1 We apply the Chinese Remainder Theorem (as stated above).

2 Using the notations of the theorem, we have m = 3, n = 5,
a = 1, b = 2.

3 We need s and t such that s m + t n = 1, hence

4 we can choose s = 2 and t = −1.

5 Then, we have

c ≡ a + (b − a) s m ≡ 1 + (2 − 1) × 2 × 3 ≡ 7 mod 15.
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1.1 Linear Congruences
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2. Applications of Congruences
2.1 Hashing Functions
2.2 Pseudorandom Numbers
2.3 Checking Digits

3. Cryptography
3.1 Classical cryptography
3.2 Public Key Cryptography
3.3 The RSA Encryption
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Hashing functions
A hashing function h assigns memory location h(k) to the record
that has k as its key.

1 A common hashing function is h(k) = k mod m, where m is
the number of memory locations.

2 Because h is onto, all memory locations are possible.

Let h(k) = k mod 111. This hashing function assigns the records of
customers with social security numbers as keys to memory locations
in the following manner:

h(064212848) = 064212848 mod 111 = 14
h(107405723) = 107405723 mod 111 = 14, but since location
14 is already occupied, the record is assigned to the next
available position, which is 15.

1 The hashing function is not one-to-one as there are many more
possible keys than memory locations. When more than one
record is assigned to the same location, we have a collision
(resolved by assigning the record to the first free location).

2 For collision resolution, we can use a linear probing function:
h(k , i) = (h(k) + i) (mod m), where i runs from 0 to m − 1.

3 There are many other methods of handling with collisions.
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Pseudorandom numbers

1 Randomly chosen numbers are needed for many purposes,
including computer simulations.

2 Pseudorandom numbers are not truly random since they are
generated by systematic methods.

3 The linear congruential method is one commonly used
procedure for generating pseudorandom numbers.

4 Four integers are needed: the modulus m, the multiplier a,
the increment c, and seed x0, with
2 ≤ a < m,0 ≤ c < m,0 ≤ x0 < m.

5 We generate a sequence of pseudorandom numbers {xn} with
0 ≤ xn < m for all n, by successively using the recursive
function

xn+1 = (axn + c) (mod m)
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Pseudorandom numbers
Compute the terms of the sequence by successively using the
congruence xn+1= (7xn + 4) (mod 9) with x0 = 3.

x1 = 7x0 + 4 (mod 9) = 7 ⋅ 3 + 4 (mod 9) = 25 (mod 9) = 7,

x2 = 7x1 + 4 (mod 9) = 7 ⋅ 7 + 4 (mod 9) = 53 (mod 9) = 8,

x3 = 7x2 + 4 (mod 9) = 7 ⋅ 8 + 4 (mod 9) = 60 (mod 9) = 6,

x4 = 7x3 + 4 (mod 9) = 7 ⋅ 6 + 4 (mod 9) = 46 (mod 9) = 1,

x5 = 7x4 + 4 (mod 9) = 7 ⋅ 1 + 4 (mod 9) = 11 (mod 9) = 2,

x6 = 7x5 + 4 (mod 9) = 7 ⋅ 2 + 4 (mod 9) = 18 (mod 9) = 0,

x7 = 7x6 + 4 (mod 9) = 7 ⋅ 0 + 4 (mod 9) = 4 (mod 9) = 4,

x8 = 7x7 + 4 (mod 9) = 7 ⋅ 4 + 4 (mod 9) = 32 (mod 9) = 5,

x9 = 7x8 + 4 (mod 9) = 7 ⋅ 5 + 4 (mod 9) = 39 (mod 9) = 3

1 The sequence generated is
3,7,8,6,1,2,0,4,5,3,7,8,6,1,2,0,4,5,3, . . .

2 It repeats after generating 9 terms.
3 Commonly, computers use a linear congruential generator with

increment c = 0. This is called a pure multiplicative generator.
4 Such a generator with modulus 231 − 1 and multiplier

75 = 16,807 generates 231 − 2 numbers before repeating.
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2 It repeats after generating 9 terms.
3 Commonly, computers use a linear congruential generator with

increment c = 0. This is called a pure multiplicative generator.
4 Such a generator with modulus 231 − 1 and multiplier

75 = 16,807 generates 231 − 2 numbers before repeating.
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Checking digits: UPCs

1 A common method for detecting errors in strings of digits is to
add an extra digit at the end, which is evaluated using a
function.

2 If the final digit is not correct, then the string is assumed not
to be correct.

3 Retail products are identified by their Universal Product Codes
(UPC s). Usually these have 12 decimal digits, the last one
being the check digit. The check digit x12 is determined by:
3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 ≡ 0 mod 10

a Suppose that the first 11 digits of the UPC are 79357343104.
What is the check digit?

1 3 ⋅7+9+3 ⋅3+5+3 ⋅7+3+3 ⋅4+3+3 ⋅1+0+3 ⋅4+x12 ≡ 0 (mod 10)
2 21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x12 ≡ 0 (mod 10)
3 98 + x12 ≡ 0 (mod 10)
4 So, the check digit is 2.

b Is 041331021641 a valid UPC?

1 0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 /≡ 0 (mod 10)
2 Hence, 041331021641 is not a valid UPC.
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Checking digits: ISBNs
1 Books are identified by an International Standard Book

Number (ISBN-10), a 10 digit code

x1, x2, x3, . . . , x9, x10

2 The first 9 digits identify the language, the publisher, and the
book. The tenth digit is a check digit, which is determined by
the following congruence

x10 ≡
9

∑
i=1

ixi (mod 11)

3 Since 11x10 ≡ 0 (mod 11) and x10 + 10x10 ≡
10

∑
i=1

ixi (mod 11) it

is easy to show that the validity of an ISBN-10 number can be
equivalently evaluated by checking

10

∑
i=1

ixi ≡ 0 (mod 11)
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Checking digits: ISBNs

x10 ≡ ∑9
i=1 ixi (mod 11)⇔ ∑10

i=1 ixi ≡ 0 (mod 11)

1 Suppose that the first 9 digits of the ISBN-10 are 007288008.
What is the check digit?

Solution:

a x10 ≡ 1 ⋅ 0 + 2 ⋅ 0 + 3 ⋅ 7 + 4 ⋅ 2 + 5 ⋅ 8 + 6 ⋅ 8 + 7 ⋅ 0 + 8 ⋅ 0 + 9 ⋅ 8
mod 11.

b x10 ≡ 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 mod 11.
c x10 ≡ 189 ≡ 2 mod 11. Hence, x10 = 2.

2 Is 084930149X a valid ISBN10? (X is used as the digit 10.)

Solution:

a 1 ⋅ 0 + 2 ⋅ 8 + 3 ⋅ 4 + 4 ⋅ 9 + 5 ⋅ 3 + 6 ⋅ 0 + 7 ⋅ 1 + 8 ⋅ 4 + 9 ⋅ 9 + 10 ⋅ 10
b = 0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 /≡ 0

mod 11
c Hence, 084930149X is not a valid ISBN-10.

A single error is an error in one digit of an identification number
and a transposition error is the accidental interchanging of two
digits. Both of these kinds of errors can be detected by the check
digit for ISBN-10.
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mod 11.

b x10 ≡ 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 mod 11.
c x10 ≡ 189 ≡ 2 mod 11. Hence, x10 = 2.

2 Is 084930149X a valid ISBN10? (X is used as the digit 10.)

Solution:

a 1 ⋅ 0 + 2 ⋅ 8 + 3 ⋅ 4 + 4 ⋅ 9 + 5 ⋅ 3 + 6 ⋅ 0 + 7 ⋅ 1 + 8 ⋅ 4 + 9 ⋅ 9 + 10 ⋅ 10
b = 0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 /≡ 0

mod 11
c Hence, 084930149X is not a valid ISBN-10.

A single error is an error in one digit of an identification number
and a transposition error is the accidental interchanging of two
digits. Both of these kinds of errors can be detected by the check
digit for ISBN-10.
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Caesar cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Julius Caesar created secret messages by shifting each letter three
letters forward in the alphabet (sending the last three letters to the
first three letters.)

For example, the letter B is replaced by E and
the letter X is replaced by A. This process of making a message
secret is an example of encryption. Here is how the encryption
process works:

1 Replace each letter by an integer from Z26 , that is an integer
from 0 to 25 representing one less than its position in the
alphabet.

2 The encryption function is f ( p) = (p + 3) (mod 26) . It
replaces each integer p in the set {0,1,2, . . . ,25} by f (p) in
the set {0,1,2, . . . ,25}.

3 Replace each integer p by the letter with the position p + 1 in
the alphabet.
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Caesar cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Example

Encrypt the message “MEET YOU IN THE PARK” using the
Caesar cipher.

1 Write with numbers in Z26 ∶ 12 4 4 19 24 14 20 8 13 19 7 4
15 0 17 10.

2 Now replace each of these numbers p by
f (p) = (p + 3) (mod 26).

3 15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.

4 Translating the numbers back to letters produces the
encrypted message “PHHW BRX LQ WKH SDUN.”
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Caesar cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 To recover the original message, use
f −1(p) = (p − 3) (mod 26). So, each letter in the coded
message is shifted back three letters in the alphabet, with the
first three letters sent to the last three letters.

2 This process of recovering the original message from the
encrypted message is called decryption .

3 The Caesar cipher is one of a family of ciphers called shift
ciphers. Letters can be shifted by an integer k , with 3 being
just one possibility. The encryption function is

a f (p) = (p + k) (mod 26)

and the decryption function is

b f −1(p) = (p − k) (mod 26)

4 The integer k is called a key .
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Shift cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Example

Encrypt the message “STOP GLOBAL WARMING” using the shift
cipher with k = 11.
Solution :

1 Replace each letter with the corresponding element of Z26.

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6.

2 Apply the shift f (p) = (p + 11) (mod 26), yielding

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17.

3 Translating the numbers back to letters produces the
ciphertext

“DEZA RWZMLW HLCXTYR.”
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Example

Decrypt the message “LEWLYPLUJL PZ H NYLHA ALHJOLY”
that was encrypted using the shift cipher with k = 7.
Solution:

1 Replace each letter with the corresponding element of Z26.

11 4 22 11 24 15 11 20 9 11 15 25 7 13 24 11 7 0 0 11 7 9 14
11 24.

2 Shift each of the numbers by −k = −7 modulo 26, yielding

4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17.

3 Translating the numbers back to letters produces the
decrypted message

“EXPERIENCE IS A GREAT TEACHER.”
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4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17.

3 Translating the numbers back to letters produces the
decrypted message

“EXPERIENCE IS A GREAT TEACHER.”



Shift cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Example

Decrypt the message “LEWLYPLUJL PZ H NYLHA ALHJOLY”
that was encrypted using the shift cipher with k = 7.
Solution:

1 Replace each letter with the corresponding element of Z26.

11 4 22 11 24 15 11 20 9 11 15 25 7 13 24 11 7 0 0 11 7 9 14
11 24.

2 Shift each of the numbers by −k = −7 modulo 26, yielding

4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17.

3 Translating the numbers back to letters produces the
decrypted message

“EXPERIENCE IS A GREAT TEACHER.”



Affine ciphers

Shift ciphers are a special case of affine ciphers which use
functions of the form

f (p) = (ap + b) (mod 26)

where a and b are integers, chosen so that f is a bijection.

Note: this function is a bijection if and only if gcd(a,26) = 1. See
Tutorial 7.

Example

What letter replaces the letter K when the function
f (p) = (7p + 3) (mod 26) is used for encryption.

Solution : Since 10 represents K,
f (10) = (7 ⋅ 10 + 3) (mod 26) = 21, which corresponds to letter V.
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Affine ciphers

To decrypt a message encrypted by a shift cipher, the congruence
c ≡ ap + b (mod 26) needs to be solved for p.

1 Subtract b from both sides to obtain
ap ≡ c − b (mod 26)

2 Multiply both sides by the inverse a of a modulo 26, which
exists since gcd(a,26) = 1

aap ≡ a(c − b) (mod 26)
which simplifies to

p ≡ a(c − b) (mod 26)
determining p in Z26 given a,b and cryptotext c .
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Example

Example

1 What is the decryption function for an affine cipher
f (x) ≡ 3x + 7 (mod 26)?

Solution: f −1(x) ≡ 9x + 15 (mod 26)
Note: 9 is inverse of 3 modulo 26 and
−9 ⋅ 7 = −63 ≡ 15 (mod 26)

2 Decrypt the following message encrypted by the above
“UTTQ CTOA”

Solution: “NEED HELP”
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Plan for Part II

1. Solving Congruences
1.1 Linear Congruences
1.2 Systems of Linear Congruences

2. Applications of Congruences
2.1 Hashing Functions
2.2 Pseudorandom Numbers
2.3 Checking Digits

3. Cryptography
3.1 Classical cryptography
3.2 Public Key Cryptography
3.3 The RSA Encryption



Public key cryptography

1 All classical ciphers, including shift and affine ciphers, are
private key cryptosystems. Knowing the encryption key allows
one to quickly determine the decryption key.

2 All parties who wish to communicate using a private key
cryptosystem must share the key and keep it a secret.

3 In public key cryptosystems, first invented in the 1970s,
knowing how to encrypt a message does not help one to
decrypt the message.

4 Therefore, everyone can have a publicly known encryption key.
The only key that needs to be kept secret is the decryption
key.
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The RSA Cryptosystem
Clifford Cocks

(Born 1950)

1 A public key cryptosystem, now known as the RSA system
was introduced in 1976 by three researchers at MIT.

Ronald Rivest (Born

1948)

Adi Shamir (Born

1952)

Leonard Adelman

(Born 1945)

It is now known that the method was discovered earlier by
Clifford Cocks, working secretly for the UK government.

2 The public encryption key is a pair (n, e) where the modulus
n is the product of two large (200 digits) primes p and q and
exponent e is relatively prime to (p − 1 ) (q − 1 ).

3 Factorization n = p ⋅ q is kept private! With approximately
400 digits, n cannot be factored in a reasonable length of time.
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The RSA encryption (overview)

To encrypt a message using RSA using a public key (n, e):

1 Translate the plain text message M into sequences of two digit
integers representing the letters. Use 00 for A, 01 for B, etc.

2 Concatenate the two digit integers into strings of digits.

3 Divide this string into equally sized blocks of 2N digits where
2N is the largest even number with 2N digits that does not
exceed n.

4 The plain text message M is now a sequence of integers
m1,m2, . . . , mk .

5 Each block (an integer) is encrypted using
modular exponentiation function (efficiently computable, see
Tutorial 7) that gives ciphertext message C :

C =Me (mod n)
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The RSA decryption (overview)
1 Decryption C →M requires known exponentiation inverse d of

e modulo n:
C d = (Me)d ≡M (mod n)

Modular exponentiation is a one-way function : it is easy to
compute , but hard to invert. In general, finding modular
exponential inverse d is believed to be very difficult (as
difficult as finding prime factorization of modulus n).

2 RSA assumes “privately” known factorization n = p ⋅ q where p
and q are prime. In this case, the decryption key d can be
obtained as a multiplicative inverse of e modulo
(p − 1)(q − 1), which is easy to compute (via Euclidean
algorithm for Bézout coefficients) assuming relative primality
gcd(e, (p − 1)(q − 1)) = 1. It can be shown that such (privately
known) key d allows to decrypt ciphertext message C with the
simple computation:

M = C d mod (p ⋅ q)
3 RSA works as a public key system since the only known

method of finding d is based on a factorization of n into
primes. There is currently no known feasible method for
factoring large numbers into primes.
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