Analysis of Divide and Conquer Algorithms

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Orders of magnitude

Let f, g et h be functions from \mathbb{N} to \mathbb{R} .

• We say that g(n) is in the **order of magnitude** of f(n) and we write $f(n) \in \Theta(g(n))$ if there exist two strictly positive constants c_1 and c_2 such that for n big enough we have

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n).$$
 (1)

• We say that g(n) is an **asymptotic upper bound** of f(n) and we write $f(n) \in \mathcal{O}(g(n))$ if there exists a strictly positive constants c_2 such that for n big enough we have

$$0 \leq f(n) \leq c_2 g(n). \tag{2}$$

• We say that g(n) is an **asymptotic lower bound** of f(n) and we write $f(n) \in \Omega(g(n))$ if there exists a strictly positive constants c_1 such that for n big enough we have

$$0 \leq c_1 g(n) \leq f(n). \tag{3}$$

Examples

• With $f(n) = \frac{1}{2}n^2 - 3n$ and $g(n) = n^2$ we have $f(n) \in \Theta(g(n))$. Indeed we have

$$c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2.$$
 (4)

for $n \ge 12$ with $c_1 = \frac{1}{4}$ and $c_2 = \frac{1}{2}$.

• Assume that there exists a positive integer n_0 such that f(n) > 0 and g(n) > 0 for every $n \ge n_0$. Then we have

$$\max(f(n),g(n)) \in \Theta(f(n)+g(n)). \tag{5}$$

Indeed we have

$$\frac{1}{2}(f(n)+g(n)) \le max(f(n),g(n)) \le (f(n)+g(n)).$$
 (6)

• Assume a and b are positive real constants. Then we have

$$(n+a)^b \in \Theta(n^b). \tag{7}$$

Indeed for n > a we have

$$0 \leq n^b \leq (n+a)^b \leq (2n)^b.$$
 (8)

Hence we can choose $c_1 = 1$ and $c_2 = 2^b$.

Properties

- $f(n) \in \Theta(g(n))$ holds iff $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$ hold together.
- Each of the predicates $f(n) \in \Theta(g(n))$, $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$ define a reflexive and transitive binary relation among the \mathbb{N} -to- \mathbb{R} functions. Moreover $f(n) \in \Theta(g(n))$ is symmetric.
- We have the following transposition formula

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n)).$$
 (9)

In practice \in is replaced by = in each of the expressions $f(n) \in \Theta(g(n))$, $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$. Hence, the following

$$f(n) = h(n) + \Theta(g(n)) \tag{10}$$

means

$$f(n) - h(n) \in \Theta(g(n)). \tag{11}$$

Another example

Let us give another fundamental example. Let p(n) be a (univariate) polynomial with degree d > 0. Let a_d be its leading coefficient and assume $a_d > 0$. Let k be an integer. Then we have

- (1) if $k \ge d$ then $p(n) \in \mathcal{O}(n^k)$,
- (2) if $k \leq d$ then $p(n) \in \Omega(n^k)$,
- (3) if k = d then $p(n) \in \Theta(n^k)$.

Exercise: Prove the following

$$\sum_{k=1}^{k=n} k \in \Theta(n^2). \tag{12}$$

Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Divide-and-Conquer Algorithms

Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.

Conquer on the sub-problems by solving them directly if they are small enough or proceed recursively.

Combine the solutions of the sub-problems to obtain the solution of the input problem.

Equation satisfied by T(n). Assume that the size of the input problem increases with an integer n. Let T(n) be the time complexity of a divide-and-conquer algorithm to solve this problem. Then T(n) satisfies an equation of the form:

$$T(n) = a T(n/b) + f(n).$$
(13)

where f(n) is the cost of the combine-part, $a \ge 1$ is the number of recursively calls and n/b with b > 1 is the size of a sub-problem.

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume n is a power of b, say $n = b^p$. To *solve* the equation

$$T(n) = a T(n/b) + f(n).$$

we can associate a labeled tree A(n) to it as follows.

- (1) If n = 1, then A(n) is reduced to a single leaf labeled T(1).
- (2) If n > 1, then the root of $\mathcal{A}(n)$ is labeled by f(n) and $\mathcal{A}(n)$ possesses a labeled sub-trees all equal to $\mathcal{A}(n/b)$.

The labeled tree A(n) associated with T(n) = a T(n/b) + f(n) has height p+1. Moreover the sum of its labels is T(n).

Solving divide-and-conquer recurrences (1/2)

Solving divide-and-conquer recurrences (2/2)

IDEA: Compare $n^{log_{ba}}$ with f(n).

Master Theorem: case $n^{\log_b a} \gg f(n)$

$$f(n/b) = \log_{b^n} \qquad f(n/b) - \cdots - a f(n/b) - \cdots - a^2 f(n/b) - \cdots - a^2 f(n/b^2)$$

$$f(n/b^2) \quad f(n) \quad GEOMETRICALLY - \cdots - a^2 f(n/b^2)$$

$$INCREASING \qquad \vdots$$

$$for some constant \epsilon > 0 \qquad \vdots$$

$$T(1) \qquad f(n/b) - \cdots - a^2 f(n/b^2)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$for some constant \epsilon > 0 \qquad \vdots$$

$$- a^{\log_b n} T(1)$$

$$= \Theta(n^{\log_b a})$$

Master Theorem: case $f(n) \in \Theta(n^{\log_b a} \log^k n)$

Master Theorem: case where $f(n) \gg n^{\log_b a}$

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

*and f(n) satisfies the *regularity condition* that $a f(n/b) \le c f(n)$ for some constant c < 1.

More examples

Consider the relation:

$$T(n) = 2 T(n/2) + n^2.$$
 (14)

We obtain:

$$T(n) = n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \dots + \frac{n^2}{2^p} + n T(1).$$
 (15)

Hence we have:

$$T(n) \in \Theta(n^2). \tag{16}$$

Consider the relation:

$$T(n) = 3T(n/3) + n.$$
 (17)

We obtain:

$$T(n) \in \Theta(\log_3(n)n). \tag{18}$$

Let a > 0 be an integer and let $f, T : \mathbb{N} \longrightarrow \mathbb{R}_+$ be functions such that

- (i) $f(2n) \ge 2f(n)$ and $f(n) \ge n$.
- (ii) If $n = 2^p$ then $T(n) \le a T(n/2) + f(n)$.

Then for $n = 2^p$ we have

(1) if a = 1 then

$$T(n) \le (2 - 2/n) f(n) + T(1) \in \mathcal{O}(f(n)),$$
 (19)

(2) if a = 2 then

$$T(n) \le f(n) \log_2(n) + T(1) n \in \mathcal{O}(\log_2(n) f(n)),$$
 (20)

(3) if $a \ge 3$ then

$$T(n) \leq \frac{2}{a-2} \left(n^{\log_2(a)-1} - 1 \right) f(n) + T(1) n^{\log_2(a)} \in \mathcal{O}(f(n) n^{\log_2(a)-1}).$$

(21)

Indeed

$$T(2^{p}) \leq a T(2^{p-1}) + f(2^{p})$$

$$\leq a \left[a T(2^{p-2}) + f(2^{p-1}) \right] + f(2^{p})$$

$$= a^{2} T(2^{p-2}) + a f(2^{p-1}) + f(2^{p})$$

$$\leq a^{2} \left[a T(2^{p-3}) + f(2^{p-2}) \right] + a f(2^{p-1}) + f(2^{p})$$

$$= a^{3} T(2^{p-3}) + a^{2} f(2^{p-2}) + a f(2^{p-1}) + f(2^{p})$$

$$\leq a^{p} T(s1) + \sigma_{i=0}^{j=p-1} a^{j} f(2^{p-j})$$
(22)

Moreover

$$f(2^{p}) \geq 2 f(2^{p-1}) f(2^{p}) \geq 2^{2} f(2^{p-2}) \vdots \vdots \vdots f(2^{p}) \geq 2^{j} f(2^{p-j})$$
(23)

Thus

$$\sum_{j=0}^{j=p-1} a^j f(2^{p-j}) \le f(2^p) \sum_{j=0}^{j=p-1} \left(\frac{a}{2}\right)^j.$$
 (24)

Hence

$$T(2^p) \leq a^p T(1) + f(2^p) \sum_{j=0}^{j=p-1} \left(\frac{a}{2}\right)^j.$$
 (25)

For a=1 we obtain

$$T(2^{p}) \leq T(1) + f(2^{p}) \sum_{j=0}^{j=p-1} \left(\frac{1}{2}\right)^{j}$$

$$= T(1) + f(2^{p}) \frac{\frac{1}{2^{p}} - 1}{\frac{1}{2} - 1}$$

$$= T(1) + f(n) (2 - 2/n).$$
(26)

For a = 2 we obtain

$$T(2^{p}) \leq 2^{p} T(1) + f(2^{p}) p$$

= $n T(1) + f(n) \log_{2}(n)$. (27)

Master Theorem cheat sheet

For $a \ge 1$ and b > 1, consider again the equation

$$T(n) = a T(n/b) + f(n).$$
(28)

• We have:

$$(\exists \varepsilon > 0) \ f(n) \in O(n^{\log_b a - \varepsilon}) \implies T(n) \in \Theta(n^{\log_b a})$$
 (29)

• We have:

$$(\exists \varepsilon > 0) \ f(n) \in \Theta(n^{\log_b a} \log^k n) \implies T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) \ (30)$$

• We have:

$$(\exists \varepsilon > 0) \ f(n) \in \Omega(n^{\log_b a + \varepsilon}) \implies T(n) \in \Theta(f(n))$$
 (31)

Master Theorem quizz!

•
$$T(n) = 4T(n/2) + n$$

•
$$T(n) = 4T(n/2) + n^2$$

•
$$T(n) = 4T(n/2) + n^3$$

•
$$T(n) = 4T(n/2) + n^2/\log n$$

Acknowledgements

• Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.