
CS3101 Due: Tuesday 12th of March

Problem Set 2
CS3101 Submission instructions on last page

PROBBLEM 1. [30 points]
The objective of this problem is to design a parallel algorithm for the Maximum Subarray

Problem (MSP). In computer science, the MSP is the task of finding the contiguous subarray
within a one-dimensional array of numbers (containing at least one positive number) which
has the largest sum. We shall consider two algorithms. The first one is called Kadane’s
algorithm and is described at:

http://en.wikipedia.org/wiki/Maximum subarray problem

The second one is called Bentley’s algorithm and is described at:

http://penguin.ewu.edu/ bojianxu/courses/cscd320/slides dc 2.pdf

In our Analise’s, we rely on the ideal-cache model (see the lecture notes) and assume that our
ideal cache memory has Z words in total, with L words per cache-line. We assume that the
input of our implementation of each algorithm is a one-dimensional array A consisting of n
contiguous words. For parallelism analysis, we rely on the fork-join multithreaded parallelism
(see the lecture notes). Note that both Kadane’s algorithm and Bentley’s algorithm are not
stated as parallel algorithms. So a first task is to state fork-join versions of those algorithms,
when possible. Once this is done, one can consider the work and the span of those algorithms.
We denote respectively by WK(n), SK(n) and QK(n):

• the total number of arithmetic operations (including comparisons)

• the span,

• the number of cache misses.

during the execution of Kadane’s algorithm when applied to an array A of size n. Similarly,
we denote by WB(n), SB(n) and QB(n) the work, the span and the number of cache misses
during the execution of Bentley’s algorithm when applied to an array A of size n.

Question 1. [10 points] Explain why Kadane’s algorithm cannot be parallelized in the fork-join
multithreaded parallelism model. Deduce WK(n) and SK(n),

Question 2. [10 points] Propose a parallel version of Bentley’s algorithm. Determine WB(n)
and SB(n).

Question 3. [10 points] On multicore architectures, which of the two algorithms should give
the best performance? Justify your answer. You are welcome to realize a Cilk++ imple-
mentation of Bentley’s algorithm and a C/C++ implementation of Kadane’s algorithm.
If successful, those would give 10 bonus points.

1



PROBBLEM 2. [40 points] The square of a matrix A is its product with itself, namely
AA.

Question 1. [5 points] Show that five multiplications are sufficient to compute the square of
a 2× 2 matrix.

Question 2. [15 points] In this part, we show that if n × n matrices can be squared in time
WS(n) = O(nc), for some real number c ≥ 2, then any matrices can be multiplied in
time O(nc) as well. In other words, squaring matrices is no easier (in terms of work)
than matrix multiplication.

1. Given two n × n matrices A and B, show that the matrix AB + BA can be
computed in time 3WS(n) + O(n2).

2. Given two n × n matrices X and Y , define the 2n × 2n matrices A and B as
follows

A =

(
X 0
0 0

)
and B =

(
0 Y
0 0

)
What is AB + BA in terms of X and Y ?

3. Using the answers of the previous two questions, argue that XY can be computed
in time 3WS(n) + O(n2).

4. Conclude that matrix multiplication can be done in time WS(n) = O(nc).

Question 3. [20 points] In this part, we consider squaring matrices in a parallel manner.

1. Using the Cilk++ language as pseudo-code, propose a parallel divide-and-conquer
algorithm for squaring matrices. This algorithm should not allocate extra storage
during the recursive calls.

2. Analyze the span of your algorithm.

3. Compare your algorithm with the in-place parallel divide-and-conquer algorithm
studied in class for matrix multiplication.

PROBBLEM 3. [30 points]
In this problem, we develop a divide-and-conquer algorithm for the following geometric

task, called the CLOSEST PAIR PROBLEM (CSP):

Input: A set of n points in the plane

{p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)}

2



Output: The closet pair of points, that is, the pair pi 6= pj for which the distance between
pi and pj, that is, √

(xj − xi)2 + (yj − yi)2

is minimized.

For simplicity, we assume that n is a power of 2 and that all the x-coordinates xi are pairwise
distinct, as well are the y-coordinates yi. Here’s a high-level overview of the proposed
algorithm:

1. Find a value x for which exactly half the points have xi < x and half have xi > x, thus
splitting into groups L and R.

2. Recursively find the closest pair in L and R. Let us call these pairs pL, qL ∈ L and
pR, qR ∈ R, with distances dL and dR. Let d be the smaller of these two distances.

3. It remains to be seen whether there is a point in L and a point in R that are less than
distance d apart from each other. To this end, discard all points with xi < x − d or
xi > x + d. Then, sort the remaining points by y-coordinate.

4. Now, go through this shorted list, and for each point, compute its distance to the seven
subsequent points in the list. Let pM , qM be the closest pair found in that way.

5. The answer is {pL, qL}, {pR, qR} and {pM , qM}, whichever is closest.

Question 1. [5 points] In order to prove the correctness of this algorithm, start by showing
the following property: any square of size d × d (where d is as defined in the above
overview of the proposed algorithm) in the plane contains at most four points of L.

Question 2. [5 points] Now show that the algorithm is correct. The only case which needs
careful consideration is when the closest pair is split between L and R.

Question 3. [5 points] Write down the pseudo-code for the algorithm, and show that its work
is given by the recurrence:

W (n) = 2W (n/2) + O(nlog(n))

Deduce that W (n) ∈ O(nlog2(n)).

Question 4. [5 points] Propose a parallel version of this algorithm and show that its parallelism
is limited to log(n).

Question 5. [10 points] Propose an improved parallel algorithm with a parallelism of n/log(n).

Submission instructions.

3



Format: The answers to the problem questions should be typed.

• If these are programs, input test files and a Makefile (for compiling and running)
are required.

• If these are algorithms or complexity analyzes, LATEX is highly recommended; in
any case a PDF file should gather all these answers.

All the files should be archived using the UNIX tar command.

Submission: The assignment should be returned to the instructor by email.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems that are not appropriate. For instance, because the parallelism model
is different. So please, avoid those traps and work out the solutions by yourself. You
should not hesitate to contact me if you have any questions regarding this assignment.
I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may give rise to a 10 %
malus.

4


