
Issues with Multithreaded Parallelism on Multicore
Architectures

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 1 / 35

Plan

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 2 / 35

Example 1: a small loop with grain size = 1

Code:

const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()

{

#pragma cilk_grainsize = 1

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Expectations:

Parallelism should be large, perhaps Θ(N) or Θ(N/ logN).

We should see great speedup.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 3 / 35

Speedup is indeed great. . .

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 4 / 35



. . . but performance is lousy

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 5 / 35

Recall how cilk for is implemented

Source:

cilk_for (int i = A; i < B; ++i)

BODY(i)

Implementation:

void recur(int lo, int hi) {

if ((hi - lo) > GRAINSIZE) {

int mid = lo + (hi - lo) / 2;

cilk_spawn recur(lo, mid);

cilk_spawn recur(mid, hi);

} else

for (int i = lo; i < hi; ++i)

BODY(i);

}

recur(A, B);
(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 6 / 35

Default grain size

Cilk++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()

{

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Cilk++’s heuristic for the grain size:

grain size = min

{
N

8P
, 512

}
.

Generates about 8P parallel leaves.

Works well if the loop iterations are not too unbalanced.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 7 / 35

Speedup with default grain size

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 8 / 35



Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()

{

#pragma cilk_grainsize = N

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Actually, no (except for noise):

Grain size Runtime

1 8.55 s
default (= 512) 2.44 s

N (= 108) 2.42 s

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 9 / 35

Speedup with grain size = N

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 10 / 35

Trade-off between grain size and parallelism

Use Cilkview to understand the trade-off:

Grain size Parallelism

1 6,951,154
default (= 512) 248,784

N (= 108) 1

In Cilkview, P = 1:

default grain size = min

{
N

8P
, 512

}
= min

{
N

8
, 512

}
.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 11 / 35

Lessons learned

Measure overhead before measuring speedup.

Compare 1-processor Cilk++ versus serial code.

Small grain size ⇒ higher work overhead.

Large grain size ⇒ less parallelism.

The default grain size is designed for small loops that are reasonably
balanced.

You may want to use a smaller grain size for unbalanced loops or loops
with large bodies.

Use Cilkview to measure the parallelism of your program.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 12 / 35



Example 2: A for loop that spawns

Code:

const int N = 10 * 1000 * 1000;

/* empty test function */

void f() { }

void for_spawn()

{

for (int i = 0; i < N; ++i)

cilk_spawn f();

}

Expectations:

I am spawning N parallel things.

Parallelism should be Θ(N), right?

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 13 / 35

“Speedup” of for spawn()

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 14 / 35

Insufficient parallelism

PPA analysis:

PPA says that both work and span are Θ(N).

Parallelism is ≈ 1.62, independent of N.

Too little parallelism: no speedup.

Why is the span Θ(N)?

for (int i = 0; i < N; ++i)

cilk_spawn f();

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 15 / 35

Alternative: a cilk for loop.

Code:

/* empty test function */

void f() { }

void test_cilk_for()

{

cilk_for (int i = 0; i < N; ++i)

f();

}

PPA analysis:

The parallelism is about 2000 (with default grain size).

The parallelism is high.

As we saw earlier, this kind of loop yields good performance and
speedup.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 16 / 35



Lessons learned

cilk_for() is different from for(...) cilk_spawn.

The span of for(...) cilk_spawn is Ω(N).

For simple flat loops, cilk_for() is generally preferable because it
has higher parallelism.

(However, for(...) cilk_spawn might be better for recursively
nested loops.)

Use Cilkview to measure the parallelism of your program.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 17 / 35

Example 3: Vector addition

Code:

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i)

A[i] = B[i] + C[i];

}

Expectations:

Cilkview says that the parallelism is 68,377.

This will work great!

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 18 / 35

Speedup of vector add()

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 19 / 35

Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level daxpy bandwidth

L1 19.6 GB/s per core
L2 18.3 GB/s per core
L3 13.8 GB/s shared
DRAM 7.1 GB/s shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

A single core can generally saturate most of the memory hierarchy.

Multiple cores that access memory will conflict and slow each other
down.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 20 / 35



How do you determine if memory is a bottleneck?

Hard problem:

No general solution.

Requires guesswork.

Two useful techniques:

Use a profiler such as the Intel VTune.

Interpreting the output is nontrivial.
No sensitivity analysis.

Perturb the environment to understand the effect of the CPU and
memory speeds upon the program speed.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 21 / 35

How to perturb the environment

Overclock/underclock the processor, e.g. using the power controls.

If the program runs at the same speed on a slower processor, then the
memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.

If the program runs at the same speed on a slower DRAM, then the
memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

Run P independent copies of the serial program concurrently.

If they slow each other down then memory is probably a bottleneck.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 22 / 35

Perturbing vector add()

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

fib(5); // waste time

}

}

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 23 / 35

Speedup of perturbed vector add()

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 24 / 35



Interpreting the perturbed results

The memory is a bottleneck:

A little extra work (fib(5)) keeps 8 cores busy. A little more extra
work (fib(10)) keeps 16 cores busy.

Thus, we have enough parallelism.

The memory is probably a bottleneck. (If the machine had a shared
FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

vector_add cannot be fixed in isolation.

You must generally restructure your program to increase the reuse of
cached data. Compare the iterative and recursive matrix
multiplication from yesterday.

(Or you can buy a newer CPU and faster memory.)

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 25 / 35

Lessons learned

Memory is a common bottleneck.

One way to diagnose bottlenecks is to perturb the program or the
environment.

Fixing memory bottlenecks usually requires algorithmic changes.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 26 / 35

Example 4: Nested loops

Code:

const int N = 1000 * 1000;

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Expectations:

The inner loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 3.6.

We should see some speedup.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 27 / 35

“Speedup” of inner parallel()

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 28 / 35



Interchanging loops

Code:

const int N = 1000 * 1000;

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Expectations:

The outer loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 4.

Same as the previous program, which didn’t work.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 29 / 35

Speedup of outer parallel()

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 30 / 35

Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration overheads.

Depends upon:

How well we implement the Cilk++ scheduler.

How you express the parallelism in your program.

Cilkview prints the burdened parallelism:

0.29 for inner_parallel(), 4.0 for outer_parallel().

In a good program, parallelism and burdened parallelism are about
equal.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 31 / 35

What is the burdened parallelism?

Code:

A();

cilk_spawn B();

C();

D();

cilk_sync;

E();

Burdened critical path:

The burden is Θ(10000) cycles (locks, malloc, cache warmup, reducers,
etc.) (Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 32 / 35



The burden in our examples

Θ(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Θ(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 33 / 35

Lessons learned

Insufficient parallelism yields no speedup; high burden yields
slowdown.

Many spawns but small parallelism: suspect large burden.

Cilkview helps by printing the burdened span and parallelism.

The burden can be interpreted as the number of spawns/syncs on the
critical path.

If the burdened parallelism and the parallelism are approximately
equal, your program is ok.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 34 / 35

Summary and notes

We have learned to identify and (when possible) address these problems:

High overhead due to small grain size in cilk_for loops.

Insufficient parallelism.

Insufficient memory bandwidth.

Insufficient burdened parallelism.

(Moreno Maza) Issues with Multithreaded Parallelism on Multicore Architectures CS3101 35 / 35


