Issues with Multithreaded Parallelism on Multicore
Architectures

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101

1/35

Plan

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 2/35

Example 1: a small loop with grain size =1

Code:
const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()
{
#pragma cilk_grainsize = 1
cilk_for (int i = 0; i < N; ++i)
fib(2);

Expectations:
e Parallelism should be large, perhaps ©(N) or ©(N/ log N).

@ We should see great speedup.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 3/35

|
Speedup is indeed great. . .

16 | P,
]
14 P
12 | i
L
EE o*
P oo .
ul 6 L .'
L]
4 L .
L
2t .
L]
0 I 1 I 1 1 I 1 1

0 2 4 4] 8 10 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 4 /35

... but performance is lousy

16 |
g 1
o
R
g 10
wi
3 s
@
-
j='8 b r
=]

4 ¢ s *
E .."
(%] 2k

o *
D_.’ I I 1 1 1 1 1

0 2 4 B 8 0 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 5/35

|
Recall how cilk_for is implemented
Source:

cilk_for (int i = A; i < B; ++1i)
BODY (i)

Implementation:

void recur(int lo, int hi) {

if ((hi - 1o) > GRAINSIZE) {
int mid = lo + (hi - lo) / 2;
cilk_spawn recur(lo, mid);
cilk_spawn recur(mid, hi);

} else
for (int i = lo; i < hi; ++i)

BODY (i) ;

recur (A, B);
(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 6 /35

e
Default grain size

Cilk4++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()
{
cilk_for (int i = 0; i < N; ++i)
£ib(2);

Cilk4++'s heuristic for the grain size:

N
in size = minq -—,512, .
grain size = min {8P’5 }

@ Generates about 8P parallel leaves.

@ Works well if the loop iterations are not too unbalanced.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 7/35

|
Speedup with default grain size

16 | -
L
g M| .
L]
= 12 .
= o
g 10]
] L
2 sl ‘
u [
;_ bt .
=] []
o4l .
=% L
ol 2t .
L
D I I ! I I ! I I

0 2 4 4] 8 10 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 8 /35

Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()
{
#pragma cilk_grainsize = N
cilk_for (int i = 0; i < N; ++i)
fib(2);

Actually, no (except for noise):

Grain size Runtime
1 8.55s
default (= 512) | 2.44s
N (= 108) 2.42s

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 9/35

-
Speedup with grain size = N

16 |
14 +
12 +
o 10 |
=
] 8
=%
N 6 L
4 L
2
D.i........li-!.l
0 2 4 6 8 10 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 10 / 35

Trade-off between grain size and parallelism

Use Cilkview to understand the trade-off:

Grain size Parallelism
1 6,951,154
default (= 512) | 248,784
N (= 10%) 1

In Cilkview, P = 1:

N
default grain size = min { 512

8P’

e tsn)

(Moreno Maza) Issues with Multithreaded Parallelism on Mult

CS3101

11/ 35

Lessons learned

@ Measure overhead before measuring speedup.
o Compare 1-processor Cilk-++ versus serial code.

Small grain size = higher work overhead.

Large grain size = less parallelism.
@ The default grain size is designed for small loops that are reasonably
balanced.

e You may want to use a smaller grain size for unbalanced loops or loops
with large bodies.

Use Cilkview to measure the parallelism of your program.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 12 / 35

Example 2: A for loop that spawns

Code:
const int N = 10 * 1000 * 1000;

/* empty test function */
void £O { }

void for_spawn()

{
for (int 1 = 0; i < N; ++i)
cilk_spawn f();
}

Expectations:
@ | am spawning N parallel things.
o Parallelism should be ©(N), right?

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 13 / 35

-
“Speedup” of for_spawn()

16 |
14 |
12

o 10 +

=

B 8

j=

(¥ 6—
4 L
2 1L
0 e v s 00 e 000000000

0 2 4 4] 8 0 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 14 / 35

Insufficient parallelism

PPA analysis:
@ PPA says that both work and span are ©(N).

@ Parallelism is &~ 1.62, independent of N.

@ Too little parallelism: no speedup.

Why is the span ©(N)?

for (int i = 0; i < N; ++i)
cilk_spawn £();

Issues with Multithreaded Parallelism on Mult

CS3101 15 / 35

(Moreno Maza)

Alternative: a cilk_for loop.

Code:

/* empty test function */
void £ { }

void test_cilk_for()

{
cilk_for (int i = 0; i < Nj; ++i)
£O;
} v
PPA analysis:

The parallelism is about 2000 (with default grain size).
@ The parallelism is high.

@ As we saw earlier, this kind of loop yields good performance and
speedup.

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101

16 / 35

Lessons learned

@ cilk_for() is different from for(...) cilk_spawn.
@ The span of for(...) cilk_spawn is Q(N).

@ For simple flat loops, cilk_for() is generally preferable because it
has higher parallelism.

@ However, for(...) cilk_spawn might be better when the work
load is not uniformly distributed across all iterations.

@ Use Cilkview to measure the parallelism of your program.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 17 / 35

|
Example 3: Vector addition

Code:
const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()
{
cilk_for (int i = 0; i < N; ++i)
Ali] = B[i] + C[il;

Expectations:

o Cilkview says that the parallelism is 68,377.

@ This will work great!

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 18 / 35

|
Speedup of vector_add()

16 |
14 |
12
o 10 +
o
3 8 r
j= 8
w 6 L
4 L
2 Foo.-tt----t
]
0 I L I I L L I L

0 2 4 4] 8 0 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 19 / 35

Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level

daxpy bandwidth

L1
L2
L3
DRAM

19.6 GB/s per core
18.3GB/s per core
13.8 GB/s shared
7.1GB/s shared

daxpy: x[i] = a*xx[i] + y[il, double precision.

The memory bottleneck:

@ A single core can generally saturate most of the memory hierarchy.

@ Multiple cores that access memory will conflict and slow each other

down.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult

CS3101 20 / 35

How do you determine if memory is a bottleneck?

Hard problem:
@ No general solution.

@ Requires guesswork.

Two useful techniques:

@ Use a profiler such as the Intel VTune.
e Interpreting the output is nontrivial.
o No sensitivity analysis.
@ Perturb the environment to understand the effect of the CPU and
memory speeds upon the program speed.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 21 /35

How to perturb the environment

Overclock/underclock the processor, e.g. using the power controls.

o If the program runs at the same speed on a slower processor, then the
memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.

o If the program runs at the same speed on a slower DRAM, then the
memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

@ Run P independent copies of the serial program concurrently.

o If they slow each other down then memory is probably a bottleneck.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 22 /35

-
Perturbing vector_add ()

const int N = 50 * 1000 * 1000;
double A[N], B[N], C[NI];

void vector_add()

{
cilk_for (int 1 = 0; i < N; ++i) {
A[i] = B[i] + C[i];
fib(5); // waste time
}
}

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 23 /35

|
Speedup of perturbed vector_add()

Speedup

16
14

12 +

10

= S B = =

(Moreno Maza)

original]

fib(5)

fib(10)

=

Fat
i-'a
i......qtti-i.i

2 4 b 8 10 12 14 16

Number of Processors

Issues with Multithreaded Parallelism on Mult CS3101

24 / 35

-
Interpreting the perturbed results

The memory is a bottleneck:

o A little extra work (£ib(5)) keeps 8 cores busy. A little more extra
work (£ib(10)) keeps 16 cores busy.

@ Thus, we have enough parallelism.

@ The memory is probably a bottleneck. (If the machine had a shared
FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?
@ vector_add cannot be fixed in isolation.

@ You must generally restructure your program to increase the reuse of
cached data. Compare the iterative and recursive matrix
multiplication from yesterday.

@ (Or you can buy a newer CPU and faster memory.)

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 25 /35

Lessons learned

@ Memory is a common bottleneck.

@ One way to diagnose bottlenecks is to perturb the program or the
environment.

@ Fixing memory bottlenecks usually requires algorithmic changes.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 26 / 35

|
Example 4: Nested loops

Code:
const int N = 1000 * 1000;

void inner_parallel()

{
for (int 1 = 0; i < N; ++i)
cilk_for (int j = 0; j < 4; ++j)
£fib(10); /* do some work */
}

Expectations:

@ The inner loop does 4 things in parallel. The parallelism should be
about 4.

@ Cilkview says that the parallelism is 3.6.

@ We should see some speedup.

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 27 / 35

-
“Speedup” of inner parallel()

16 |
14 ¢ test run .
12 t PPA estimate
o 10 +
=
] 8 |
o
[¥a] 6 |
4 L
7 |
L.
oL_® e e e s 888080868088

0 2 4 4] 8 10 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 28 / 35

Interchanging loops

Code:
const int N = 1000 * 1000;

void outer_parallel()

{
cilk_for (int j = 0; j < 4; ++j)
for (int i = 0; i < N; ++i)
fib(10); /* do some work */
}

Expectations:

@ The outer loop does 4 things in parallel. The parallelism should be
about 4.

@ Cilkview says that the parallelism is 4.

@ Same as the previous program, which didn't work.

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101

29 / 35

-
Speedup of outer parallel()

16 |
14+ test run .
12 t PPA estimate
o 10 +
=
B 8 |
j=
W 6 L
4 * o 00 e et e ® oo,
2} . @
™
D 1 1 I 1 1 1 I 1

0 2 4 4] 8 0 12 14 16

Number of Processors

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 30/ 35

Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:
Parallelism after accounting for the unavoidable migration overheads.
Depends upon:

@ How well we implement the Cilk++ scheduler.

@ How you express the parallelism in your program.

Cilkview prints the burdened parallelism:
@ 0.29 for inner_parallel(), 4.0 for outer_parallel().

@ In a good program, parallelism and burdened parallelism are about
equal.

v

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 31/35

|
What is the burdened parallelism?

Code:
AO;
cilk_spawn B(Q);
CO;
DO
cilk_sync;

EQ;

Burdened critical path:

e = s COa s COa D,
G

The burden is ©(10000) cycles (locks, malloc, cache warmup, reducers,
(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 32/35

The burden in our examples

©(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{
for (int i = 0; i < N; ++i)
cilk_for (int j = 0; j < 4; ++j)
fib(10); /* do some work */
}

©(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{
cilk_for (int j = 0; j < 4; ++j)
for (int i = 0; i < N; ++i)
£fib(10); /* do some work */
}

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 33 /35

Lessons learned

o Insufficient parallelism yields no speedup; high burden yields
slowdown.

@ Many spawns but small parallelism: suspect large burden.
@ Cilkview helps by printing the burdened span and parallelism.

@ The burden can be interpreted as the number of spawns/syncs on the
critical path.

@ If the burdened parallelism and the parallelism are approximately
equal, your program is ok.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 34 /35

Summary and notes

We have learned to identify and (when possible) address these problems:

High overhead due to small grain size in cilk_for loops.

°

@ Insufficient parallelism.

@ Insufficient memory bandwidth.
°

Insufficient burdened parallelism.

(Moreno Maza) Issues with Multithreaded Parallelism on Mult CS3101 35 /35

