Plan

Introduction to Multicore Programming J @ Multi-core Architecture

@ Multi-core processor
@ CPU Coherence

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada) @ Concurrency Platforms
@ An overview of Cilk++
CS 3101 @ Race Conditions and Cilkscreen

e MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 3101 1/31 (Moreno Maza) Introduction to Multicore Programming CS 3101 2/31
Multi-core Architecture Multi-core Architecture Multi-core processor

Plan

10,000

@ Multi-core Architecture
@ Multi-core processor 1,000

@ CPU Coherence
Power Density qgo

(Wiem2)

(Moreno Maza) Introduction to Multicore Programming CS 3101 3/31 (Moreno Maza) Introduction to Multicore Programming CS 3101 4 /31

Multi-core Architecture Multi-core processor

Multi-core Architecture Multi-core processor

(Moreno Maza) Introduction to Multicore Programming
Multi-core Architecture Multi-core processor

Memory | 1/0 I

Network
@
P

Chip Multiprocessor (CMP)

(Moreno Maza) Introduction to Multicore Programming

Dual CPU Core Chip
7
CPU Core CPU Core
and and
L1 Caches L1 Caches
Bus Interface
L2 Caches
\, V.
CS 3101 5 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 6 /31

Multi-core Architecture Multi-core processor

Multi-core processor

@ A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

@ In a many-core processor the number of cores is large enough that
traditional multi-processor techniques are no longer efficient.

@ Cores on a multi-core device can be coupled tightly or loosely:
e may share or may not share a cache,
e implement inter-core communications methods or message passing.
@ Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, SIMD or multi-threading.

@ Many applications do not realize yet large speedup factors:
parallelizing algorithms and software is a major on-going research area.

CS 3101 7/31 (Moreno Maza) Introduction to Multicore Programming CS 3101 8 /31

Multi-core Architecture CPU Coherence Multi-core Architecture CPU Coherence

Cache Coherence (1/6) Cache Coherence (2/6)

Figure: Processor P; reads x=3 first from the backing store (higher-level memory) Figure: Next, Processor P, loads x=3 from the same memory

(Moreno Maza) Introduction to Multicore Programming CS 3101 9 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 10 / 31
(VTSR W NIl CPU Coherence (\IT[ISEr WG eIl CPU Coherence

Cache Coherence (3/6) Cache Coherence (4/6)

Figure: Processor P, loads x=3 from the same memory Figure: Processor P, issues a write x=5

(Moreno Maza) Introduction to Multicore Programming CS 3101 11 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 12 /31

Multi-core Architecture CPU Coherence

Cache Coherence (5/6)

<O

Figure: Processor P, writes x=5 in his local cache

(Moreno Maza) Introduction to Multicore Programming CS 3101 13 /31
(VTSR W NIl CPU Coherence

MSI Protocol

@ In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- I: this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

@ These coherency states are maintained through communication
between the caches and the backing store.

@ The caches have different responsibilities when blocks are read or
written, or when they learn of other caches issuing reads or writes for
a block.

(Moreno Maza) Introduction to Multicore Programming CS 3101 15 / 31

Multi-core Architecture CPU Coherence

Cache Coherence (6/6)

® X=5 | === | x=3

P P P

Figure: Processor P; issues a read x, which is now invalid in its cache

(Moreno Maza) Introduction to Multicore Programming CS 3101 14 / 31

Multi-core Architecture CPU Coherence

True Sharing and False Sharing

@ True sharing:

e True sharing cache misses occur whenever two processors access the
same data word

e True sharing requires the processors involved to explicitly synchronize
with each other to ensure program correctness.

e A computation is said to have temporal locality if it re-uses much of
the data it has been accessing.

e Programs with high temporal locality tend to have less true sharing.

e False sharing:
o False sharing results when different processors use different data that
happen to be co-located on the same cache line
e A computation is said to have spatial locality if it uses multiple words
in a cache line before the line is displaced from the cache
e Enhancing spatial locality often minimizes false sharing
@ See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam

http://suif.stanford.edu/papers/anderson95/paper.html

(Moreno Maza)

Introduction to Multicore Programming CS 3101 16 / 31

Multi-core Architecture CPU Coherence
Multi-core processor (cntd) Plan

o Advantages:

o Cache coherency circuitry operate at higher rate than off-chip.
o Reduced power consumption for a dual core vs two coupled single-core
processors (better quality communication signals, cache can be shared)

o Challenges:
e Adjustments to existing software (including OS) are required to

maximize performance © Concurrency Platforms
e Production yields down (an Intel quad-core is in fact a double @ An overview of Cilk-++
dual-core) _ _ _ @ Race Conditions and Cilkscreen
e Two processing cores sharing the same bus and memory bandwidth o MMM in Cilk++

may limit performances
o High levels of false or true sharing and synchronization can easily
overwhelm the advantage of parallelism

(Moreno Maza) Introduction to Multicore Programming CS 3101 17 /31 (Moreno Maza) Introduction to Multicore Programming Cs 3101 18 /31
Concurrency Platforms An overview of Cilk+-+4 Concurrency Platforms An overview of Cilk++4
From Cilk to Cilk++ Cilk 4+

@ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

@ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,

@ Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++
(resp. C) supporting fork-join parallelism

and Cilkchess. @ Both Cilk and Cilk++ feature a provably efficient work-stealing
@ Over the years, the implementations of Cilk have run on computers scheduler.

ranging from networks of Linux laptops to an 1824-nodes Intel))) .)

Paragon. @ Cilk++ provides a hyperobject library for parallelizing code with

o From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, global variables and performing reduction for data aggregation.
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

@ Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-ci

@ Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

Introduction to Multicore Programming CcS3101 19 /31 (Moreno Maza) Introduction to Multicore Programming CcS3101 20/31

@ Cilk++ includes the Cilkscreen race detector and the Cilkview
performance analyzer.

(@NIICAMEIR I An overview of Cilk+-+ (@I AMER I An overview of Cilk++

Nested Parallelism in Cilk ++ Loop Parallelism in Cilk ++
~
int fib(int n) Ap Ay .. Ay, Ay Ayp .. Ay
{ a, a a a;; a a
if (n < 2) return n; ?] ?2) .2n |:> 1_2 ?2) ?2
int X, y; H H . H H H . H
x = cilk_spawn fib(n-1); dpy dpp - dApp A, Ay - ann)
y = fib(n-2); A AT
cilk_sync;

7 Tl
return x+y; // indices run from 0, not 1

} cilk_for (int i=1; i<n; ++i) {
O R GITTE] = 0 <=)

dogb1g temp = A[i][j];
@ The named child function cilk spawn fib(n-1) may execute in il L

S AL31[4] ;temp;
parallel with its parent executes fib(n-2). g

@ Cilk++ keywords cilk spawn and cilk_sync grant permissions for

parallel execution. They do not command parallel execution. _ _ _
The iterations of a cilk for loop may execute in parallel.

(Moreno Maza) Introduction to Multicore Programming CS 3101 21 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 22 /31
(@I IR LPISIIT I An overview of Cilk+-+ (@I IR MBI (I I An overview of Cilk++

Serial Semantics (1/2) Serial Semantics (2/2)

@ Cilk (resp. Cilk++) is a multithreaded language for parallel int fib Cint m {

programming that generalizes the semantics of C (resp. C++) by gsénEZ) return (n);
introducing linguistic constructs for parallel control. int X;X ,
X = %1b%ﬁs§?wn fib(n-1);
. . . y.= fib(n-2);
@ Cilk (resp. Cilk++) is a faithful extension of C (resp. C++): cilk_sync;
) return (x+y);
e The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct } Cilk++
implementation of the semantics of the program. ‘
e Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision. }thﬁlg)(lggu?% Eoys
@ To obtain the serialization of a Cilk++ program ¢ ?ﬁt{x,g;
x = fib(n-1);
#tdefine cilk_for for y = fib(n-2);
]] return (x+y);
#define cilk_spawn ! } | ‘

#define cilk_sync

(Moreno Maza) Introduction to Multicore Programming CS 3101 23 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 24 /31

An overview of Cilk++
Scheduling

int fib (int n) {

if (n<2) return (n);

else {
TiliE s
X = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

>

(Moreno Maza) Introduction to Multicore Programming
Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (2/3)

CS3101 25/31

| int x = 0; | @ ’Tv—\
V""‘L""'V
Q| x++; X++; O e ‘r1++;| e I%"‘FI
| assert(x == 2); ‘ @ X = rl; @ X = r2;
O ¥
@ ‘ assert(x == 2); ‘
ril X r2

(Moreno Maza) Introduction to Multicore Programming CS 3101 27 /31

Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (1/3)

Example ®)
: Z 0
C) TMiiE 3% =, O 1t
cilk_for(int i=0, i<2, ++i) {
OO} X++; Q| x++; x++; |@
C) assert(x == 2); L____T____J
| assert(x == 2);
Q
Dependency Graph

@ lterations of a cilk_for should be independent.

@ Between a cilk_spawn and the corresponding cilk sync, the code
of the spawned child should be independent of the code of the parent,
including code executed by additional spawned or called children.

@ The arguments to a spawned function are evaluated in the parent
before the spawn occurs.

(Moreno Maza) Introduction to Multicore Programming
Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (3/3)

CcS3101 26 /31

@ Watch out for races in packed data structures such as:

structq{
char a;
char b;
}

Updating x.a and x.b in parallel can cause races.

@ If an ostensibly deterministic Cilk++ program run on a given input
could possibly behave any differently than its serialization,
Cilkscreen race detector guarantees to report and localize the
offending race.

e Employs a regression-test methodology (where the programmer
provides test inputs) and dynamic instrumentation of binary code.

@ ldentifies files-names, lines and variables involved in the race.

@ Runs about 20 times slower than real-time.

Introduction to Multicore Programming CS 3101 28 /31

(Moreno Maza)

Concurrency Platforms MMM in Cilk4++ Concurrency Platforms MMM in Cilk++

template<typename T> void multiply_rec_seq_helper(int iO, int il, int jO,
int j1, int kO, int k1, T* A, ptrdiff_t lda, T* B, ptrdiff_t 1ldb, Tx C,
ptrdiff_t 1dc)

{
int di = il - i0;
int dj = j1 - jO;
template<typename T> void multiply_iter_par(int ii, int jj, int kk, int dk = k1 - kO;
T*x C) if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD) {
{ int mi = i0 + di / 2;
. multiply_rec_seq_helper(iO, mi, jO, ji, kO, k1, A, 1lda, B, 1db, C, 1ldc);
cilk_for(int i = 0; i < ii; ++1) multiilg_rec_seg_helier(mi, i1, ;o, ;1, k0, k1, A, lda, B, 1db, C, 1dc);
for (int k = 0; k < kk; ++k) } else if (dj >= dk && dj >= RECURSION_THRESHOLD) {
cilk_for(int j = 0; j < jj; ++j) int mj = jO +dj / 2;
C[i * JJ + J] 4= A[i * kk + k] + B[k * JJ + J], multiply_rec_seq_helper(iO, i1, jO, mj, kO, k1, A, lda, B, 1ldb, C, 1ldc);
multiply_rec_seq_helper(iO, i1, mj, ji, kO, ki, A, 1lda, B, 1db, C, 1dc);
¥ } else if (dk >= RECURSION_THRESHOLD) {
int mk = k0 + dk / 2;
Does not scale up well due to a poor locality and uncontrolled granularity. multiply rec_seq_helper(iO, i1, jO, ji, kO, mk, A, lda, B, 1db, C, 1ldc);
multiply_rec_seq_helper(iO, i1, jO, j1, mk, k1, A, lda, B, 1ldb, C, 1ldc);
} else {
for (int i = i0; i < i1l; ++i)
for (int k = kO0; k < k1; ++k)
for (int j = jO; j < jil; ++j)
C[i * 1dc + j] += A[i * 1da + k] * B[k * 1db + jI;
}
}

(Moreno Maza) Introduction to Multicore Programming CS 3101 29 /31 (Moreno Maza) Introduction to Multicore Programming CS 3101 30 /31
Concurrency Platforms MMM in Cilk++

template<typename T> inline void multiply_rec_seq(int ii, int jj, i1
T+ B, T* C)

{
multiply_rec_seq_helper(0, ii, 0, jj, O, kk, A, kk, B, jj, C, j

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

@ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

@ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.
#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

(Moreno Maza) Introduction to Multicore Programming CS 3101 31 /31

