
CS3101 Due: Wednesday 12-th of February 2014

Problem Set 1

CS3101 Submission instructions on last page

PROBBLEM 1. [30 points] The goal of this problem is to experiment, within Julia,
with the Sieve of Eratosthenes for determining all prime numbers less than a given positive
integer. At the Wikipedia page en.wikipedia.org/wiki/Sieve_of_Eratosthenes you will
find a description of this algorithm.

Question 1. [10 points] Write a serial Julia function Eratosthenes serial which takes
a positive integer n as input and returns all prime numbers less than n.

Question 2. [20 points] Taking advantage of distributed arrays in Julia, write a function
Eratosthenes distributed which takes two positive integers n and p as input and returns
all prime numbers less than n by using p processors.

PROBBLEM 2. [70 points] The goal of this problem is to experiment, within Julia, with
a matrix multiplication scheme which was designed for distributed computing by Lynn Elliot
Cannon, see the Wikipedia page http://en.wikipedia.org/wiki/Cannon’salgorithm.

Let us assume that we have p processors available and that p is a perfect square, say
p ∈ {4, 9, 16, . . .}. Our input matrices A and B are assumed to be square of order n. We
denote by C their product.

We divide A,B,C into p square blocks of order m := n/
√
p, thus assuming that

√
p

divides n. We denote by Ai,j , or Bi,j, or Ci,j the square block of A, or B, or C at the
intersection of the i-row and the j-th column, for 0 ≤ i <

√
p, 0 ≤ j <

√
p.

We view our p processors as the points of two-dimensional square grid of order
√
p.

Hence, we denote by Pi,j the processor at the intersection of the i-row and the j-th column,
for 0 ≤ i <

√
p, 0 ≤ j <

√
p.

The goal of Processor Pi,j is to compute Ci,j. Recall that we have:

Ci,j =

√
p]∑

k=0

Ai,k Bk,j. (1)

Initially, Processor Pi,j holds Ai,j , Bi,j , Ci,j .
The key idea of the algorithm is to shift blocks of A horizontally and blocks of B vertically

so that matching blocks Ai,k and Bk,j meet in Pi,j at the same time, for all 0 ≤ i <
√
p,

0 ≤ j <
√
p.

Letting r :=
√
p, the algorithm precisely writes as follows:

1

en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Cannon'salgorithm

for i = 0, . . . , r − 1 do in parallel

rotate blocks of A in row i by i positions leftward
for j = 0, . . . , r − 1 do in parallel

rotate blocks of B in column j by j positions upward
repeat r times
for each processor Pi,j do in parallel

multiply current blocks of A and B and add the result to Ci,j

for i = 0, . . . , r − 1 do in parallel

rotate blocks of A in row i by 1 position leftward;
for j = 0, . . . , r − 1 do in parallel

rotate blocks of B in column j by 1 position upward;

Question 1. [10 points] Write a serial Julia function Cannon serial 2 which

• takes as input two square matrices A and B (encoded as non-distributed arrays) of the
same order n and

• returns their product C in two steps as follows

C0,0 := A0,0B0,0 C0,1 := A0,1B1,1

C1,0 := A1,1B1,0 C1,1 := A1,0B0,1
(2)

C0,0 := C0,0 + A0,1B1,0 C0,1 := C0,1 + A0,0B0,1

C1,0 := C1,0 + A1,0B0,0 C1,1 := C1,1 + A1,1B1,1
(3)

where the Ai,j , Bi,j are square blocks.

2

Question 2. [20 points] Write a distributed Julia function Cannon distributed 2 which

• takes as input two square matrices A and B (encoded as distributed arrays) of the same
order n and

• returns their product C using the scheme of Question 1.

This function will be using 4 processors (regarded as a 2 × 2-grid) with the notations and
hypotheses described above for Cannon’s algorithm.

Question 3. [30 points] Write a distributed Julia function Cannon distributed p which

• takes as input two square matrices A and B (encoded as distributed arrays) of the same
order n, a positive integer p, and

• returns their product C using Cannon’s algorithm on p processors.

Question 4. [10 points] Compare experimentally the running times of the above three
implementations of matrix transposition. This implies to choose a series of matrix sizes and
apply these three implementations to each selected size.

Submission instructions.

Format: Problems 1 and 2 involve programming with Julia: they must be submitted as
two input files to be called Pb1.jl and Pb2.jl, respectively. Each of these two files
must be a valid input file for Julia. In addition, each user defined function must be
documented. Experimental data for Question 4 of Problem 2 can be appended as
comments to the file Pb2.jl. To summarize, each assignment submission consists of
tow files: Pb1.jl and Pb2.jl.

Submission: The assignment should be returned to the instructor by email.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems that are not appropriate. For instance, because the cache memory
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor if you have any question regarding
this assignment. I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
answers are clearly organized, precise and concise. Messy assignments (unclear state-
ments, lack of correctness in the reasoning, many typographical or language mistakes)
may give rise to a 10 % malus.

3

	Lecture – Problem Set 1

