
CS4402 With elements of correction

Problem Set 1 (Tracks A & B)
CS9535 Submission instructions on last page

Problem 1. [Track A or B] The objective of this problem is to prove that, with respect to
the Theorem of Graham & Brent, a greedy scheduler achieves the stronger bound:

TP ≤ (T1 − T
∞
)/p+ T

∞
.

Let G = (V,E) be the DAG representing the instruction stream for a multithreaded
program in the fork-join parallelism model. The sets V and E denote the vertices and edges
of G respectively. Let T1 and T

∞
be the work and span of the corresponding multithreaded

program. We assume that G is connected. We also assume that G admits a single source
(vertex with no predecessors) denoted by s and a single target (vertex with no successors)
denoted by t. Recall that T1 is the total number of elements of V and T

∞
is the maximum

number of nodes on a path from s to t (counting s and t).
Let S0 = {s}. For i ≥ 0, we denote by Si+1 the set of the vertices w satisfying the

following two properties:

(i) all immediate predecessors of w belong to Si ∪ Si−1 ∪ · · · ∪ So,

(ii) at least one immediate predecessor of w belongs to Si.

Therefore, the set Si represents all the units of work which can be done during the i−-th
parallel step (and not before that point) on infinitely many processors.

Let p > 1 be an integer. For all i ≥ 0, we denote by wi the number of elements in Si.
Let ℓ be the largest integer i such that wi 6= 0. Observe that S0, S1, . . . , Sℓ form a partition
of V . Finally, we define the following sequence of integers:

ci =

{

0 if wi ≤ p
⌈wi/p⌉ − 1 if wi > p

Question 1. [4 points] For the computation of the 4-th Fibonacci number (as studied in class)
what are S0, S1, S2, . . .?

Question 2. [4 points] Show that ℓ+ 1 = T
∞

and w0 + · · ·+ wℓ = T1 both hold.

Answer. For each i = 0 · · · ℓ − 1, the set Si+1 consists of strands which cannot be exexuted
before those in Si ∪ Si−1 ∪ · · · ∪ So are exexuted. Therefore the span T

∞
is at least

ℓ+1. On the other hand, all strands in Si+1 can be executed (concurrently) atfer those
in Si ∪ Si−1 ∪ · · · ∪ So are exexuted. Therefore the T

∞
is at most ℓ + 1. These two

observations imply ℓ+ 1 = T
∞
.

Since S0, S1, . . . , Sℓ form a partition of V , we clearly have w0 + · · ·+ wℓ = T1.

1

Question 3. [4 points] Show that we have:

c0 + · · ·+ cℓ ≤ (T1 − T
∞
)/p.

Answer. We havve
c0 + · · ·+ cℓ ≤

∑i=ℓ

i=0 (⌈wi/p⌉ − 1)

≤
∑i=ℓ

i=0 (wi/p− 1/p)

≤ 1
p

∑i=ℓ

i=0 (wi − 1)

≤ 1
p
(T1 − T

∞
) .

(1)

Indeed, for every positive integer a, b, one can easily verify the following inequality

⌈
a

b
⌉ − 1 ≤

a− 1

b
. (2)

Question 4. [4 points] Prove the desired inequality:

TP ≤ (T1 − T
∞
)/p+ T

∞
.

Answer. We start by an interpretation of the quantity ci:

• if wi ≥ p, that is, if one could perform at least one complete with the strands in
Si, then ci counts the number of other steps (incomplete or complete) that can be
done after that first complete step,

• if wi < p, that is, if one can only perform one step (in fact, an incomplete one)
with the strands in Si, then ci = 0

Therefore, in all cases, ci counts the number steps the number of other steps that
can be done in Si after that first one whether it is complete or incomplete. Hence
c0 + · · · + cℓ = TP − (ℓ + 1). Recall that we have ℓ + 1 = T

∞
. With the result of the

previous question, we deduce the desired inequality

TP − T
∞

≤
1

p
(T1 − T

∞
) . (3)

2

Question 5. [4 points] Application: Professor Brown takes some measurements of his (deter-
ministic) multithreaded program, which is scheduled using a greedy scheduler, and finds
that T4 = 80 seconds and T64 = 10 seconds. Give lower bound and an upper bound for
Professor Brown’s computation running time on p processors, for 1 ≤ p ≤ 100? Using
a plot is recommended.

Problem 2. [Track A or B]
A ⊗-reduction of an array x[1 . . . n], where ⊗ is an associative operator, is the value

y = x[1]⊗ x[2]⊗ . . .⊗ x[n].

The following procedure computes the ⊗-reduction of a subarray x[i . . . j] serially.

Algorithm 1: REDUCE(x, i, j)

1: y = x[i]
2: for k = i+ 1 to j
3: y = y ⊗ x[k]
4: return y

Question 1. [6 points] Use fork-joint parallelism to design a multithreaded algorithm P-
REDUCE, which performs the same function with Θ(n) work and Θ(lg n) span. Write
your algorithm in pseudo-code and analyze your algorithm.

Answer. The algorithm below answers the question. Clearly it has Θ(n) work and Θ(lg n)
span.

Algorithm 2: P-REDUCE(x, i, j)

1: if i == j then return x[i]
2: k = (i+ j)/2
3: a = span P-REDUCE(x, i, k)
4: b = P-REDUCE(x, k + 1, j)
5: sync

6: return a⊗ b

A related problem is that of computing a ⊗-prefix computation, sometimes called a
⊗-scan, on an array x[1 . . . n], where ⊗ is once again an associative operator. The ⊗-scan
produces the array y[1 . . . n] given by

3

y[1] = x[1],
y[2] = x[1]⊗ x[2],
y[3] = x[1]⊗ x[2]⊗ x[3],

...
y[n] = x[1]⊗ x[2]⊗ x[3]⊗ · · · ⊗ x[n],

that is, all prefixes of the array x “summed” using the ⊗ operator. The following serial
procedure SCAN performs a ⊗-prefix computation:

Algorithm 3: SCAN(x)

1: n = x.length
2: let y[1 . . . n] be a new array
3: y[1] = x[1]
4: for i = 2 to n
5: y[i] = y[i− 1]⊗ x[i]
6: return y

Unfortunately, multithreading SCAN is not straightforward. For example, changing the
for loop to a parallel for loop would create races, since each iteration of the loop body
depends on the previous iteration. The following procedure P-SCAN-1 performs the ⊗-prefix
computation in parallel, albeit inefficiently:

Algorithm 4: P-SCAN-1(x)

1: n = x.length
2: let y[1 . . . n] be a new array
3: P-SCAN-1-AUX(x, y, 1, n)
4: return y

Algorithm 5: P-SCAN-1-AUX(x, y, i, j)

1: parallel for ℓ = i to j
2: y[ℓ] = P-REDUCE(x, 1, ℓ)

Question 2. [6 points] Analyze the work, span, and parallelism of P-SCAN-1.

Answer. The P-SCAN-1-AUX algorithm has Θ(n2) work and Θ(lg n) span. (This follows
immediately from the work and span of the algorithm P-REDUCE.) The same work
and span estimates hold for P-SCAN-1.

4

Algorithm 6: P-SCAN-2(x)

1: n = x.length
2: let y[1 . . . n] be a new array
3: P-SCAN-2-AUX(x, y, 1, n)
4: return y

Algorithm 7: P-SCAN-2-AUX(x, y, i, j)

1: if i == j
2: y[i] = x[i]
3: else k = ⌊(i+ j)/2⌋
4: spawn P-SCAN-2-AUX(x, y, i, k)
5: P-SCAN-2-AUX(x, y, k + 1, j)
6: sync

7: parallel for ℓ = k + 1 to j
8: y[ℓ] = y[k]⊗ y[ℓ]

By using nested parallelism, we can obtain a more efficient ⊗-prefix computation:

Question 3. [6 points] Argue that P-SCAN-2 is correct, and analyze its work, span, and
parallelism.

Answer. First, we observe that the recursive calls operate on disjoint segments, preventing
race conditions. Nex, one can verify by induction that the serialization of the routine
is correct, because

• the left recursive call calculates the prefix sum up to the pivot, and

• the right recursive call calculates a prefix sum from the pivot to the upper bound,
and,

• the parent call correctly combines the result of the left recursive call with each
element from the right recursive call.

Therefore, the parallel routine is correct as well, since its semanctics is identical to
that of its serialization, provided that no race conditions are present.

The work satisifies T1(n) = 2T1(n/2) + Θ(n) hence, we have T1(n) ∈ Θ(n lg(n)).
The span satisifies T

∞
(n) = T

∞
(n/2) + Θ(lg(n)) hence, we have T

∞
(n) ∈ Θ(lg2(n)).

Therefore, the parallelism is in Θ(n/lg(n)), which seems attractive. Unfortunately, this
algorithm is not work-efficient since the best serial algorithm runs in Θ(n).

We can improve on both P-SCAN-1 and P-SCAN-2 by performing the ⊗-prefix compu-
tation in two distinct passes over the data. On the first pass, we gather the terms for various

5

contiguous subarrays of x into a temporary array t, and on the second pass we use the terms
in t to compute the final result y. The following pseudocode implements this strategy, but
certain expressions have been omitted:

Algorithm 8: P-SCAN-3(x)

1: n = x.length
2: let y[1 . . . n] and t[1 . . . n] be new arrays
3: y[1] = x[1]
4: if n > 1
5: P-SCAN-UP(x, t, 2, n)
6: P-SCAN-DOWN(x[1], x, t, y, 2, n)
7: return y

Algorithm 9: P-SCAN-UP(x, t, i, j)

1: if i == j
2: return x[i]
3: else

4: k = ⌊(i+ j)/2⌋
5: t[k] = spawn P-SCAN-UP(x, t, i, k)
6: right = P-SCAN-UP(x, t, k + 1, j)
7: sync

8: return //fill in the blank

Algorithm 10: P-SCAN-DOWN(v, x, t, y, i, j)

1: if i == j
2: y[i] = v ⊗ x[i]
3: else

4: k = ⌊(i+ j)/2⌋
5: spawn P-SCAN-DOWN(, x, t, y, i, k) //fill in the blank
6: P-SCAN-DOWN(, x, t, y, k + 1, j) //fill in the blank
7: sync

Question 4. [6 points] Fill in the three missing expressions in line 8 of P-SCAN-UP and lines
5 and 6 of P-SCAN-DOWN. Argue that with expressions you supplied, P-SCAN-3 is
correct. (Hint: Prove that the value v passed to P-SCAN-DOWN(v, x, t, y, i, j) satisfies
v = x[1]⊗ x[2]⊗ · · · ⊗ x[i− 1].)

6

Answer. The completed versions of P-SCAN-UP and P-SCAN-DOWN are shown below.

For a nice expalantion, with illustration, look at the section parallel algorithm of

http: // en. wikipedia. org/ wiki/ Prefix_ sum

as well as the book chapter

https: // www. cs. cmu. edu/ ~ guyb/ papers/ Ble93. pdf

written by Guy E. Blelloch, the inventor of the P-SCAN-3 algorithm.

Algorithm 11: P-SCAN-3(x)

1: n = x.length
2: let y[1 . . . n] and t[1 . . . n] be new arrays
3: y[1] = x[1]
4: if n > 1
5: P-SCAN-UP(x, t, 2, n)
6: P-SCAN-DOWN(x[1], x, t, y, 2, n)
7: return y

Algorithm 12: P-SCAN-UP(x, t, i, j)

1: if i == j
2: return x[i]
3: else

4: k = ⌊(i+ j)/2⌋
5: t[k] = spawn P-SCAN-UP(x, t, i, k)
6: right = P-SCAN-UP(x, t, k + 1, j)
7: sync

8: return t[k]⊗ right

Algorithm 13: P-SCAN-DOWN(v, x, t, y, i, j)

1: if i == j
2: y[i] = v ⊗ x[i]
3: else

4: k = ⌊(i+ j)/2⌋
5: spawn P-SCAN-DOWN(v, x, t, y, i, k)
6: P-SCAN-DOWN(v ⊗ t[k], x, t, y, k + 1, j)
7: sync

7

http://en.wikipedia.org/wiki/Prefix_sum
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Question 5. [6 points] Analyze the work, span, and parallelism of P-SCAN-3.

Answer. Clearly, each of P-SCAN-UP and P-SCAN-DOWN has Θ(n) work and Θ(lg n) span.
Then, so does P-SCAN-3.

Problem 3. [Track A] This is an experimental follow-up on Problem 2.

Question 1. [5 points] Implement in Cilk++ the four algorithms SCAN, P-SCAN-1, P-SCAN-
2, P-SCAN3 as stated in Problem 2.

Question 2. [5 points] For P-SCAN-1, P-SCAN-2, P-SCAN3, collect experimental data using
Cilkview. To this end use int arrays as input and multiplication as the operation ⊗.

Question 3. [5 points] Propose interpretation for the collected data and propose techniques
(such as the use of a serial base case) to improve the performances of P-SCAN-2,
P-SCAN3. (Indeed, P-SCAN-1 is not work-efficient so we discard it.)

Question 4. [5 points] Implement your improvements and collect data using Cilkview.

Problem 4. [Track B] This is a follow-up on Problem 2, regarding cache complexity.
Using the ideal cache model, with a cache of Z words and a cache line of L words, given

an input array of length n, state and justify a cache complexity upper bound Q(Z, L, n) for:

Question 1. [5 points] SCAN as stated in Problem 2.

Question 2. [5 points] P-SCAN-1 (as as stated in Problem 2 run on 1 processor.

Question 3. [5 points] P-SCAN-2 (as as stated in Problem 2 run on 1 processor.

Question 4. [5 points] P-SCAN-3 (as as stated in Problem 2 run on 1 processor.

Problem 5. [Track A or B]
The longest common subsequence (LCS) problem 1 is to find the longest subsequence

common to two character strings. For example, the LCS of “BANANA” and “CANADA”
is “ANAA”. The problem can be recursively solved by breaking the sequence down into

1http://en.wikipedia.org/wiki/Longest common subsequence problem

8

shorter subsequences. Denote by LCS(i, j) the LCS of sequences X = (x1, x2, . . . , xi) and
Y = (y1, y2, . . . , yj). Then LCS(i, j) can be computed by the following LCS function:

LCS (i, j) =











∅ if i = 0 or j = 0

(LCS (i− 1, j − 1) , xi) if xi = yj

longest (LCS (i, j − 1) ,LCS (i− 1, j)) if xi 6= yj

where in the second case, (LCS (i− 1, j − 1) , xi) means appending xi to the end of the LCS
of sequences (x1, x2, . . . , xi−1) and (y1, y2, . . . , yj−1).

Question 1. [5 points] Design a parallel algorithm to compute the length of LCS of two input
sequences. You can assume that the input sequences have the same length. Describe
your algorithm in pseudo-code, using of the algorithms in Problem . Finding the most
efficient parallel algorithm is not required. Hint: you may consider a 2-way divide-
and-conquer similar to the tableau construction (as studied in class).

Answer. The parallel algorithm below computes the LCS of two input sequences x and y, with
respective lengths i and j, and encoded as arrays with indexes in the range 0 · · · (i− 1)
and 0 · · · (j − 1), respectively.

Algorithm 14: LCS(x, y, i, j)

1: if i == 0 or j == 0
2: return 0
3: else if x[i− 1] == y[j − 1]
4: return 1+LCS(x, y, i− 1, j − 1)
5: else

6: k = spawn LCS(x, y, i, j − 1)
7: ℓ = LCS(x, y, i− 1, j)
8: sync

9: return max(k, ℓ)

Question 2. [5 points] Analyze the work, span and parallelism of your algorithm.

Answer. This algorithm has a which is not higher than that of a tableau construction based on
pattern of the Pascal Triangle. Therefore, the work is in O(n2). In the best scenario,
that is x = y, the work is clearly linear in n, that is, Θ(n).

Each recursive call reduces the sum of the sizes of x and y at least by 1 and at most by
2. Therefore, the span is in Θ(n).

It follows that the parallelism depends on the input sequences. It may be in Θ(n), if
the sequences do not have large common subseqences. It may be in Θ(1), otherwise.

9

Problem 6. [Track A] This is an experimental follow-up on Problem 5.

Question 1. [20 points] Write a reasonably efficient Cilk++ program for your algorithm in
Problem 5. By “reasonably efficient”, we mean that your parallel program should
run faster on p = 2, 4, 6, 8 processors than its serial counterpart (its C++ elision) for
sufficiently large input data. Compare your Cilk++ program with its C++ elision with
different sizes of inputs. Using a plot is highly recommenced, for each of p = 2, 4, 6, 8.

Question 2. [5 points, bonus] Is there another algorithm which is asymptotically as efficient
in terms of work, but more parallel? If so, briefly describe the idea of the algorithm.
If not, explain why. Make whatever interesting observations you can. You can consult
the literature.

Problem 7. [Track B] This is an experimental follow-up on Problem 5.

Question 1. [20 points] Using the ideal cache model, with a cache of Z words and a cache
line of L words, given an input array of length n, state (with justification) a cache
complexity upper bound Q(Z, L, n) for a serial algorithm computing the LCS function
of Problem 5. Finding the most efficient algorithm in terms of cache complexity is not
required. Hint: You may consider a 2-way divide-and-conquer similar to the tableau
construction (as studied in class).

Question 2. [5 points, bonus] Is there another algorithm which is asymptotically as efficient
in terms of work, but with a better cache complexity? If so, briefly describe the idea of
the algorithm. If not, explain why. Make whatever interesting observations you can.
You can consult the literature.

Submission instructions.

Format: The answers to the problem questions should be typed.

• If these are programs, input test files and a Makefile (for compiling and running)
are required.

• If these are algorithms or complexity analyzes, LATEX is highly recommended; in
any case a PDF file should gather all these answers.

All the files should be archived using the UNIX tar command.

Submission: The assignment should be returned to the instructor by email.

10

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literatures and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems which are not appropriate. For instance, because the parallelism model
is different. So please, avoid those traps and work out the solutions by yourself. You
should not hesitate to contact me if you have any questions regarding this assignment.
I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may give rise to a 10 %
malus.

11

	Lecture – Problem Set 1

