
CS3101 Due: Wednesday 8-th of April 2015

Problem Set 3
CS3101 Submission instructions on last page

PROBBLEM 1. [25 points]
In this problem, we develop a divide-and-conquer algorithm for the following geometric

task, called the CLOSEST PAIR PROBLEM (CSP):

Input: A set of n points in the plane

{p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)},

whose coordinates are floating point numbers (positive, null or negative).

Output: The closest pair of points, that is, the pair {pi, pj} with pi 6= pj for which the
distance between pi and pj, that is,√

(xj − xi)2 + (yj − yi)2

is minimized.

For simplicity, we assume that n is a power of 2 and that all the x-coordinates xi are pairwise
distinct, as well are the y-coordinates yi. Here’s a high-level overview of the proposed
algorithm:

1. Find a value x for which exactly half the points satisfy xi < x and half satisfy xi > x,
thus splitting the points into groups L and R.

2. Recursively find the closest pair in L and R. Let us call these pairs {pL, qL} with
pL, qL ∈ L and {pR, qR} with pR, qR ∈ R; we denote by dL (resp. dR) the distance
between pL and qL (resp. pR and qR). Let d be the smallest of these two distances.

3. It remains to be seen whether there is a point in L and a point in R that are less than
distance d apart from each other. To this end, discard all points with xi < x − d or
xi > x + d. Then, sort the remaining points by y-coordinate.

4. Now, go through this sorted list, and for each point, compute its distance to the seven
subsequent points in the list. Let pM , qM be the closest pair found in that way.

5. The answer is {pL, qL}, {pR, qR} and {pM , qM}, whichever is closest.

Question 1. [5 points] In order to prove the correctness of this algorithm, start by showing
the following property: any square of size d × d (where d is as defined in the above
overview of the proposed algorithm) in the plane contains at most four points of L.

1

Question 2. [5 points] Now show that the algorithm is correct. The only case which needs
careful consideration is when the closest pair is split between L and R.

Question 3. [5 points] Write down the pseudo-code for the algorithm, and show that its work
is given by the recurrence:

W (n) = 2W (n/2) + O(nlog(n))

Deduce that W (n) ∈ O(nlog2(n)).

Question 4. [10 points] Propose a parallel version of this algorithm and show that its paral-
lelism is limited to log(n).

PROBBLEM 2. [25 points]
In this problem, we consider the multiplication of two n× n matrices. To be simple, we

assume that n = 2p for some integer p.

Question 1. [10 points] Write a PRAM algorithm (with the syntax introduced in class)
using O(n3) processors for which T (n, n3) ∈ O(log(n)). For handling memory access
conflict, consider the CREW-PRAM sub-model. What is the efficiency of this algo-
rithm?

Question 2. [5 points] Following up on Question 1, can you reduce the number of pro-
cessors to O(n3/ log n) still within the CREW-PRAM sub-model. What is the time
complexity? What is the efficiency?

Question 3. [10 points] Design an algorithm to complete the operation (multiplication of
square matrices of order n) with a parallel running time of O(log(n)) in the EREW-
PRAM sub-model. How many processors do you need? What is the efficiency?

PROBBLEM 3. [50 points]
Let A be a n×n invertible lower triangular matrix. A simple divide-and-conquer strategy

to invert A is described below.
Let A be partitioned into (n/2)× (n/2) blocks as follows:

A =

[
A1 0
A2 A3

]
, (1)

where n is assumed to be a power of 2. Clearly A1 and A3 are invertible lower triangular
matrices. From there, it is easy to show that A−1 is given by:

A−1 =

[
A−1

1 0
−A−1

3 A2A
−1
1 A−1

3

]
. (2)

2

Therefore, we can obtain the inverse of A by recursively computing the inverses of A1 and A3,
and by computing two (n/2)×(n/2) matrix products so as to generate the term −A−1

3 A2A
−1
1 .

This divide-and-conquer method leads to the following questions.

Question 1. [25 points] Write a CilkPlus-like program to parallelize the above algorithm
for matrices with float coefficients. You can make use of the code for matrix mul-
tiplication available in the collection of examples of the MetaFork project from www.

metafork.org

Question 2. [10 points] Analyze the work and span of the matrix multiplication code that
you are using.

Question 3. [10 points] Analyze the work and span of your parallel program for inverting
lower triangular matrices.

Question 4. [5 points] Collect performance results with Cilkview for input random dense
lower triangular matrices of order 2i, for i = 8, 9, 10, 11, 12.

Submission instructions.

Format: For Problems 1 and 2, as well as for Question 4 of Problem 3, please submit
a PDF file called Assignment3.pdf containing your answers. Problems 3 involves
programming with CilkPlus and you should submit two input files: one text file called
Pb3.cpp containing your source code and one makefile called Makefile specifying how
to compile Pbb3.cpp. Also please explain how to run your code, for instance using a
README file or using comments in the Makefile. In addition, each user defined function
must be documented.

Submission: The assignment should be returned to the instructor by email.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems that are not appropriate. For instance, because the cache memory
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor if you have any question regarding
this assignment. I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
answers are clearly organized, precise and concise. Messy assignments (unclear state-
ments, lack of correctness in the reasoning, many typographical or language mistakes)
may give rise to a 10 % malus.

3

www.metafork.org
www.metafork.org

	Lecture – Problem Set 3

