
CS3101: Quiz 2. UWO, February 26, 2015.

Student ID number:
Student Last Name:

Guidelines. The quiz consists of two exercises and is a closed book test. All
answers should be written in the answer boxes. No justifications for the answers
are needed, unless explicitly required. You are expected to do this quiz on your
own without assistance from anyone else in the class. If possible, please avoid
pencils and use pens with dark ink. Thank you.

Exercise 1: multiple choice questions In each case, zero, one or more an-
swers may be correct; indicate all correct answers. For each of the following
pseudo-code (using the same syntax and semantics as Cilk++ or CilkPlus)
estimate the work or span using the big-oh notation. Your estimate will depend on
the following:

• n which is an int variable,

• WA and SA which are the work and span of the function call A(), respec-
tively

Note that void A (void) is a C++ function.

1



1. /* Program 1 */

for (int i = 0; i < n ; i++) {
A();

}

What is the work of the above code?

(a) n×WA

(b) WA

Answer: the work is an estimate of the running time on one processor;
thus it is proportional to the total number of instructions. Since the the
work of function A is WA, and function A is executed n times, the work of
Program 1 is (in the order of) n×WA.

2. /* Program 2 */

for (int i = 0; i < n ; i++) {
A();

}

What is the span of the above code?

(a) n× SA

(b) SA

Answer: the span is the minimum running time with infinitely processors,
i.e. the critical path length. In the above code, the loop is serial. Hence, the
i-th iteration cannot start until the the (i − 1)-th iteration finishes. So the
span is equal to the work and thus is (in the order of) n×WA.

3. /* Program 3 */

cilk_for (int i = 0; i < n ; i++) {
A();

}

2



What is the work of the above code?

(a) n×WA

(b) WA × log(n)

Answer: Although this is a parallel for-loop, the work is the same as its
serial elision, i.e. n×WA. Remember that the work is the running time on
one processor.

4. /* Program 4 */

cilk_for (int i = 0; i < n ; i++) {
A();

}

What is the span of the above code?

(a) SA × log(n)
(b) SA + log(n)

Answer: This is a parallel for-loop. Recall that cilk for uses a 2-way divide-
and-conquer implementation, so the height (span) of a cilk for (not taking
iterations into account) is log(n). So the span of above code is SA+log(n).

5. /* Program 5 */

cilk_for (int i = 0; i < n ; i++) {
for (int j = 0; j < 4; j++) {
A();

}
}

What is the work of the above code?

(a) O(n×WA)
(b) O(WA × log(n))

Answer: Similar to Program 3, the work is n× 4×WA. So the work is
O(n×WA) (ignoring the numerical constant factor).

3



6. /* Program 6 */

cilk_for (int i = 0; i < n ; i++) {
for (int j = 0; j < 4; j++) {
A();

}
}

What is the span of the above code?

(a) O(n× SA)
(b) O(SA + log(n))

Answer: Similarly to Program 5, the span is log(n) + 4 × SA. So the
work is O(SA + log(n)) (ignoring the numerical constant factor).

7. /* Program 7 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int j = 0; j < 4; j++) {
A();

}
}

What is the work of the above code?

(a) O(n×WA)
(b) O(WA × log(n))

Answer: Similarly to Program 3, the work is n× 4×WA. So the work
is O(n×WA) (ignoring the numerical constant factor).

8. /* Program 8 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int j = 0; j < 4; j++) {

4



A();
}

}

What is the span of the above code?

(a) O(n× SA)
(b) O(SA + log(n))

Answer: Similarly to Program 5, the span is log(n) + log(4) + SA. So
the work is O(SA + log(n)) (ignore the constant item).

9. When the CPU needs to read or write a memory location, it checks the
cache. If it finds it there, then we have a

(a) cache miss
(b) cache hit

Answer: If the data is already in cache, then we have a cache hit, otherwise,
we have a cache miss.

10. If a computation re-uses much of the data it has been accessing, we say that
this computation displays

(a) temporal locality
(b) spatial locality

Answer: Because we are re-using the same data, so this is temporal locality.

11. If a computation uses multiple words in a cache line before the line is dis-
placed from the cache, we say that this computation displays

(a) temporal locality
(b) spatial locality

Answer: Because we access the data in the same cache line, so this is spatial
locality.

12. Consider the following cilkplus code:

int x = 0;
cilk_for(int i=0; i<2; ++i) {
x++;
}

5



After executing the above code on a multithreaded machine, the value of x
is:

(a) 2
(b) undefined

Answer: Notice that there is a data-race in the parallel for-loop body. Two
threads maybe will try to update the same variable x at the same time, so
the result is UNDEFINED.

6


