Multithreaded Parallelism and Performance Measures

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 3101

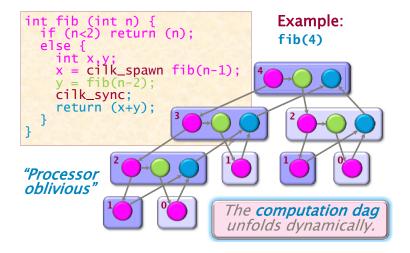
Plan

- Parallelism Complexity Measures
- 2 cilk_for Loops
- Scheduling Theory and Implementation
- Measuring Parallelism in Practice
- 6 Announcements

Plan

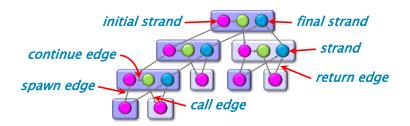
- Parallelism Complexity Measures
- 2 cilk_for Loops
- Scheduling Theory and Implementation
- Measuring Parallelism in Practice
- 5 Announcements

The fork-join parallelism model



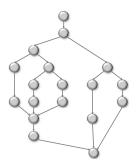
We shall also call this model multithreaded parallelism.

Terminology



- a strand is is a maximal sequence of instructions that ends with a spawn, sync, or return (either explicit or implicit) statement.
- At runtime, the spawn relation causes procedure instances to be structured as a rooted tree, called spawn tree or parallel instruction stream, where dependencies among strands form a dag.

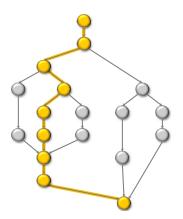
Work and span



We define several performance measures. We assume an ideal situation: no cache issues, no interprocessor costs:

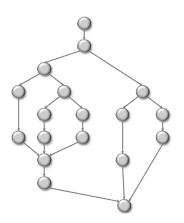
- T_p is the minimum running time on p processors
- T_1 is called the **work**, that is, the sum of the number of instructions at each node.
- T_{∞} is the minimum running time with infinitely many processors, called the span

The critical path length



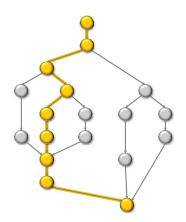
Assuming all strands run in unit time, the longest path in the DAG is equal to T_{∞} . For this reason, T_{∞} is also referred to as the **critical path length**.

Work law



- We have: $T_p \geq T_1/p$.
- ullet Indeed, in the best case, p processors can do p works per unit of time.

Span law



- We have: $T_p \geq T_{\infty}$.
- Indeed, $T_p < T_{\infty}$ contradicts the definitions of T_p and T_{∞} .

Speedup on *p* processors

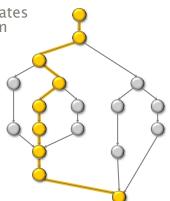
- T_1/T_p is called the **speedup on** p **processors**
- A parallel program execution can have:
 - linear speedup: $T_1/T_P = \Theta(p)$
 - superlinear speedup: $T_1/T_P = \omega(p)$ (not possible in this model, though it is possible in others)
 - sublinear speedup: $T_1/T_P = o(p)$

Parallelism

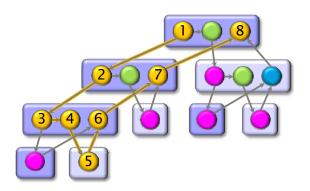
Because the Span Law dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

 $T_1/T_{\infty} = parallelism$

the average amount of work per step along the span.

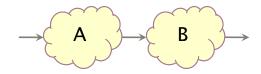


The Fibonacci example



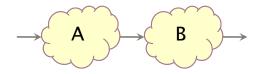
- For Fib(4), we have $T_1=17$ and $T_\infty=8$ and thus $T_1/T_\infty=2.125$.
- What about $T_1(\mathrm{Fib}(n))$ and $T_\infty(\mathrm{Fib}(n))$?

Series composition



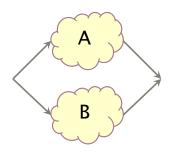
- Work?
- Span?

Series composition



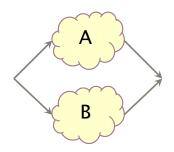
- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel composition



- Work?
- Span?

Parallel composition



- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_{\infty}(A \cup B) = \max(T_{\infty}(A), T_{\infty}(B))$

Plan

- 1 Parallelism Complexity Measures
- 2 cilk_for Loops
- 3 Scheduling Theory and Implementation
- 4 Measuring Parallelism in Practice
- 6 Announcements

For loop parallelism in Cilk++

```
cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}</pre>
```

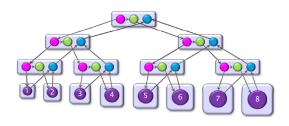
The iterations of a cilk_for loop execute in parallel.

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a divide-and-conquer implementation:

```
void recur(int lo, int hi) {
    if (hi > lo) { // coarsen
        int mid = lo + (hi - lo)/2;
        cilk_spawn recur(lo, mid);
        recur(mid+1, hi);
        cilk_sync;
    } else
        for (int j=0; j<hi; ++j) {
            double temp = A[hi][j];
            A[hi][j] = A[j][hi];
            A[j][hi] = temp;
```

Analysis of parallel for loops



Here we do not assume that each strand runs in unit time.

- Span of loop control: $\Theta(\log(n))$
- Max span of an iteration: $\Theta(n)$
- Span: $\Theta(n)$
- Work: $\Theta(n^2)$
- Parallelism: $\Theta(n)$

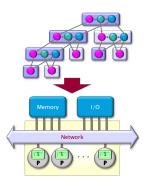
Parallelizing the inner loop

```
cilk_for (int i=1; i<n; ++i) {
    cilk_for (int j=0; j<i; ++j) {
         double temp = A[i][j];
         A[i][j] = A[j][i];
         A[j][i] = temp;
  • Span of outer loop control: \Theta(\log(n))
  • Max span of an inner loop control: \Theta(\log(n))
  • Span of an iteration: \Theta(1)
  • Span: \Theta(\log(n))
  • Work: \Theta(n^2)
  • Parallelism: \Theta(n)
```

Plan

- 1 Parallelism Complexity Measures
- 2 cilk_for Loops
- Scheduling Theory and Implementation
- 4 Measuring Parallelism in Practice
- 6 Announcements

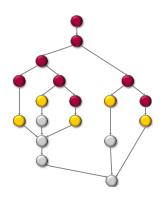
Scheduling



A **scheduler**'s job is to map a computation to particular processors. Such a mapping is called a **schedule**.

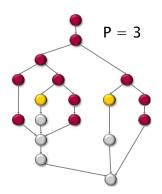
- If decisions are made at runtime, the scheduler is online, otherwise, it is offline
- Cilk++'s scheduler maps strands onto processors dynamically at runtime.

Greedy scheduling (1/2)



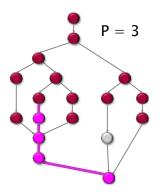
- A strand is **ready** if all its predecessors have executed
- A scheduler is greedy if it attempts to do as much work as possible at every step.

Greedy scheduling (2/2)



- In any greedy schedule, there are two types of steps:
 - **complete step**: There are at least *p* strands that are ready to run. The greedy scheduler selects any *p* of them and runs them.
 - **incomplete step**: There are strictly less than *p* threads that are ready to run. The greedy scheduler runs them all.

Theorem of Graham and Brent



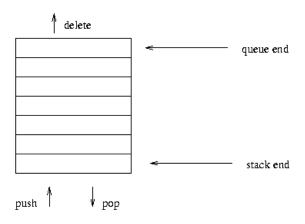
For any greedy schedule, we have $T_p \leq T_1/p + T_{\infty}$

- #complete steps $\leq T_1/p$, by definition of T_1 .
- #incomplete steps $\leq T_{\infty}$. Indeed, let G' be the subgraph of G that remains to be executed immediately prior to a incomplete step.
 - (i) During this incomplete step, all strands that can be run are actually run
 - (ii) Hence removing this incomplete step from G' reduces T_{∞} by one

The work-stealing scheduler (1/9)

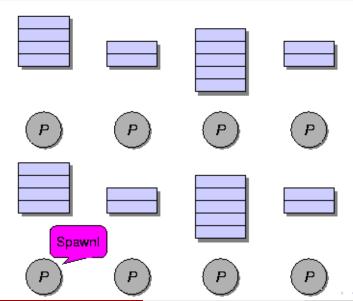
- Cilk/Cilk++ randomized work-stealing scheduler load-balances the computation at run-time. Each processor maintains a ready deque:
 - A ready deque is a double ended queue, where each entry is a procedure instance that is ready to execute.
 - Adding a procedure instance to the bottom of the deque represents a procedure call being spawned.
 - A procedure instance being deleted from the bottom of the deque represents the processor beginning/resuming execution on that procedure.
 - Deletion from the top of the deque corresponds to that procedure instance being stolen.
- A mathematical proof guarantees near-perfect linear speed-up on applications with sufficient parallelism, as long as the architecture has sufficient memory bandwidth.
- A spawn/return in Cilk is over 100 times faster than a Pthread create/exit and less than 3 times slower than an ordinary C function call on a modern Intel processor.

The work-stealing scheduler (2/9)

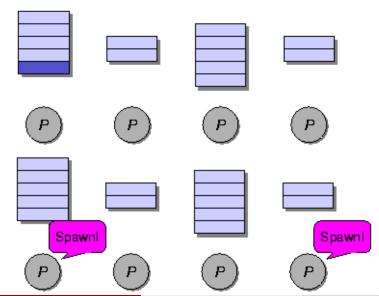


Each processor possesses a deque

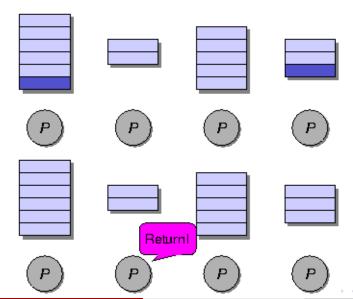
The work-stealing scheduler (3/9)



The work-stealing scheduler (4/9)

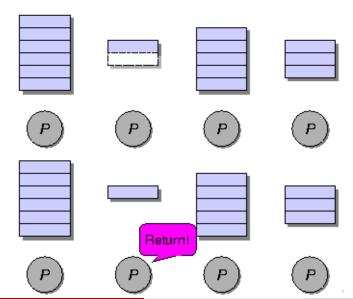


The work-stealing scheduler (5/9)

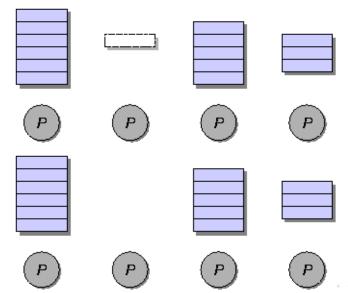


31 / 52

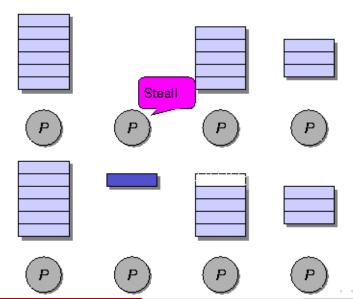
The work-stealing scheduler (6/9)



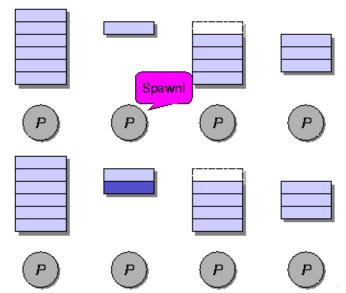
The work-stealing scheduler (7/9)



The work-stealing scheduler (8/9)



The work-stealing scheduler (9/9)



Performances of the work-stealing scheduler

Assume that

- each strand executes in unit time.
- for almost all "parallel steps" there are at least p strands to run,
- each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

$$T_P = T_1/p + O(T_\infty)$$

- During a steal-free parallel steps (steps at which all processors have work on their deque) each of the p processors consumes 1 work unit.
- Thus, there is at most T_1/p steal-free parallel steps.
- During a parallel step with steals each thief may reduce by 1 the running time with a probability of 1/p
- Thus, the expected number of steals is $O(p T_{\infty})$.
- Therefore, the expected running time

$$T_P = (T_1 + O(p T_\infty))/p = T_1/p + O(T_\infty)$$
. (1) Multithreaded Parallelism and Performance M CS 3101 36 / 52

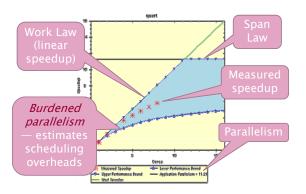
Overheads and burden

- Obviously $T_1/p + T_{\infty}$ will under-estimate T_p in practice.
- Many factors (simplification assumptions of the fork-join parallelism model, architecture limitation, costs of executing the parallel constructs, overheads of scheduling) will make T_p larger in practice.
- One may want to estimate the impact of those factors:
 - by improving the estimate of the randomized work-stealing complexity result
 - 2 by comparing a Cilk++ program with its C++ elision
 - by estimating the costs of spawning and synchronizing
- Cilk++ estimates T_p as $T_p = T_1/p + 1.7$ burden_span, where burden_span is 15000 instructions times the number of continuation edges along the critical path.

Plan

- 1 Parallelism Complexity Measures
- 2 cilk_for Loops
- Scheduling Theory and Implementation
- Measuring Parallelism in Practice
- 6 Announcements

Cilkview



- Cilkview computes work and span to derive upper bounds on parallel performance
- Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.

The Fibonacci Cilk++ example

```
Code fragment
long fib(int n)
{
  if (n < 2) return n;
  long x, y;
  x = cilk_spawn fib(n-1);
  y = fib(n-2);
  cilk_sync;
  return x + y;
```

Fibonacci program timing

The environment for benchmarking:

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

L2 cache size : 4096 KB

memory size : 3 GB

	#cores = 1	#cores = 2		#cores = 4	
n	timing(s)	timing(s)	speedup	timing(s)	speedup
30	0.086	0.046	1.870	0.025	3.440
35	0.776	0.436	1.780	0.206	3.767
40	8.931	4.842	1.844	2.399	3.723
45	105.263	54.017	1.949	27.200	3.870
50	1165.000	665.115	1.752	340.638	3.420

Quicksort

```
code in cilk/examples/qsort
void sample_qsort(int * begin, int * end)
{
   if (begin != end) {
         --end;
        int * middle = std::partition(begin, end,
            std::bind2nd(std::less<int>(), *end));
        using std::swap;
        swap(*end, *middle);
        cilk_spawn sample_qsort(begin, middle);
        sample_qsort(++middle, ++end);
        cilk_sync;
```

Quicksort timing

Timing for sorting an array of integers:

	#cores = 1	#cores = 2		#cores = 4	
# of int	timing(s)	timing(s)	speedup	timing(s)	speedup
10×10^6	1.958	1.016	1.927	0.541	3.619
50×10^6	10.518	5.469	1.923	2.847	3.694
100×10^6	21.481	11.096	1.936	5.954	3.608
500×10^6	114.300	57.996	1.971	31.086	3.677

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687×837 matrix by a 837×1107 matrix

	iterative			recursive		
threshold	st(s)	pt(s)	su	st(s)	pt (s)	su
10	1.273	1.165	0.721	1.674	0.399	4.195
16	1.270	1.787	0.711	1.408	0.349	4.034
32	1.280	1.757	0.729	1.223	0.308	3.971
48	1.258	1.760	0.715	1.164	0.293	3.973
64	1.258	1.798	0.700	1.159	0.291	3.983
80	1.252	1.773	0.706	1.267	0.320	3.959

st = sequential time; pt = parallel time with 4 cores; su = speedup

The cilkview example from the documentation

Using cilk_for to perform operations over an array in parallel:

```
static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
 long x = 15;
  static const int nn = 87;
  for (long i = 1; i < nn; ++i)
   x = x / i + k % i:
  return x;
int cilk_main(){
  for (int j = 0; j < ITERATION; j++)
    cilk_for (int i = 0; i < COUNT; i++)</pre>
      arr[i] += do_work( j * i + i + j);
```

1) Parallelism Profile

Work: 6,480,801,250 ins Span: 2,116,801,250 ins

Burdened span: 31,920,801,250 ins

Parallelism: 3.06

Burdened parallelism : 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span: 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00

4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06

A simple fix

Inverting the two for loops

```
int cilk_main()
{
  cilk_for (int i = 0; i < COUNT; i++)
    for (int j = 0; j < ITERATION; j++)
       arr[i] += do_work( j * i + i + j);
}</pre>
```

1) Parallelism Profile

Work: 5,295,801,529 ins Span: 1,326,801,107 ins

Burdened span: 1,326,830,911 ins

Parallelism: 3.99

Burdened parallelism: 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99

Timing

	#cores = 1	#cores = 2		#cores = 4	
version	timing(s)	timing(s)	speedup	timing(s)	speedup
original	7.719	9.611	0.803	10.758	0.718
improved	7.471	3.724	2.006	1.888	3.957

Plan

- 1 Parallelism Complexity Measures
- 2 cilk_for Loops
- Scheduling Theory and Implementation
- Measuring Parallelism in Practice
- Announcements

Acknowledgements

- Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.
- Matteo Frigo (Intel) for supporting the work of my team with Cilk++.
- Yuzhen Xie (UWO) for helping me with the images used in these slides.
- Liyun Li (UWO) for generating the experimental data.

References

- Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5 Multithreaded Language. Proceedings of the ACM SIGPLAN '98 Conference on Programming Language Design and Implementation, Pages: 212-223. June, 1998.
- Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel and Distributed Computing, 55-69, August 25, 1996.
- Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. Journal of the ACM, Vol. 46, No. 5, pp. 720-748. September 1999.

