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Parallelism Complexity Measures

The fork-join parallelism model

1nt f1b (CTmiE, ) 4
f (n<2) return (n);

e1se {
1nt X, ¥
X k_spawn fib(n-1);
cilk_sync;

Example:
fib(4)

return (x+y);

“Processor

oblivious”

The computation dag
{ unfolds dynamically.

We shall also call this model multithreaded parallelism.
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Parallelism Complexity Measures

Terminology

initial strand final strand

continue edge strand

spawn edge return edge

call edge

@ a strand is is a maximal sequence of instructions that ends with a
spawn, sync, or return (either explicit or implicit) statement.

@ At runtime, the spawn relation causes procedure instances to be
structured as a rooted tree, called spawn tree or parallel instruction
stream, where dependencies among strands form a dag.
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Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:

T, is the minimum running time on p processors

T1 is called the work, that is, the sum of the number of instructions at

each node.
T~ is the minimum running time with infinitely many processors, called

the span
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The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal
to Too. For this reason, T is also referred to as the critical path length.
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Work law

e We have: T, > T1/p.
@ Indeed, in the best case, p processors can do p works per unit of time.
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Parallelism Complexity Measures

Span law

o We have: T, > T.
@ Indeed, T, < T contradicts the definitions of T, and T.
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Parallelism Complexity Measures

Speedup on p processors

@ T1/T, is called the speedup on p processors

@ A parallel program execution can have:
o linear speedup: T1/Tp = O(p)

o superlinear speedup: T1/Tp = w(p) (not possible in this model,
though it is possible in others)

o sublinear speedup: T1/Tp = o(p)
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Parallelism Complexity Measures

Parallelism

Because the Span Law dictates
that T, = T, the maximum
possible speedup given T,
and T, is
T,/T., = parallelism
= the average

amount of work

per step along

the span.
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Parallelism Complexity Measures

The Fibonacci example

e For Fib(4), we have T; = 17 and To, = 8 and thus T1/ T = 2.125.
e What about T1(Fib(n)) and T (Fib(n))?
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Parallelism Complexity Measures

Series composition

o Work?
@ Span?
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Parallelism Complexity Measures

Series composition

e Work: T1(AUB) = T1(A) + T1(B)
@ Span: Too(AUB) = Too(A) 4+ Too(B)
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Parallelism Complexity Measures

Parallel composition

o Work?
@ Span?
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Parallelism Complexity Measures

Parallel composition

e Work: T1(AUB) = T1(A)+ T1(B)
@ Span: Too(AU B) = max(Tao(A), Teo(B))
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cilk_for Loops

For loop parallelism in Cilk++

ajp gz - App ayy Ay e dpy

A1 Az - Agp |:> 212 8 - App

Any A - App Ain Azn - Anp
A AT

cilk_for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {
double temp = A[i]l[j];
A[i1[3] = A[1[i];
A[j1[i]l = temp;

}

The iterations of a cilk _for loop execute in parallel.
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cilk_for Loops

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a

divide-and-conquer implementation:

void recur(int lo, int hi) {
if (hi > lo) { // coarsen
int mid = lo + (hi - lo0)/2;
cilk_spawn recur(lo, mid);
recur (mid+1, hi);
cilk_sync;
} else
for (int j=0; j<hi; ++j) {
double temp = A[hi][j];
AThil[j] = A[j1[hil;
A[j] [hi] = temp;
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cilk_for Loops

Analysis of parallel for loops

Here we do not assume that each strand runs in unit time.

Span of loop control: ©(log(n))
Max span of an iteration: ©(n)
Span: ©(n)

Work: ©(n?)

Parallelism: ©(n)
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cilk_for Loops

Parallelizing the inner loop

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {
double temp = A[i]l[j];
A[il[3] = A[31[4i];
A[j1[i] = temp;

Span of outer loop control: ©(log(n))

Max span of an inner loop control: ©(log(n))
Span of an iteration: ©(1)

Span: O(log(n))

Work: O(n?)

Parallelism: ©(n)
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Scheduling

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.
@ If decisions are made at runtime, the scheduler is online, otherwise, it
is offline
@ Cilk++'s scheduler maps strands onto processors dynamically at

runtime.
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Greedy scheduling (1/2)

@ A strand is ready if all its predecessors have executed

@ A scheduler is greedy if it attempts to do as much work as possible
at every step.
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Greedy scheduling (2/2)

@ In any greedy schedule, there are two types of steps:
o complete step: There are at least p strands that are ready to run.
The greedy scheduler selects any p of them and runs them.
e incomplete step: There are strictly less than p threads that are ready
to run. The greedy scheduler runs them all.
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Scheduling Theory and Implementation

Theorem of Graham and Brent

For any greedy schedule, we have T, < Ti/p + Tu
e #complete steps < T1/p, by definition of T;.
@ #incomplete steps < T... Indeed, let G’ be the subgraph of G that
remains to be executed immediately prior to a incomplete step.
(i) During this incomplete step, all strands that can be run are actually run

(i) Hence removing this incomplete step from G’ reduces T, by one:
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The work-stealing scheduler (1/9)

@ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

o A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

e Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

e A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

e Deletion from the top of the deque corresponds to that procedure
instance being stolen.

@ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

@ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C

function call on a modern Intel processor.
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The work-stealing scheduler (2/9)

T delete

= queueend

= stackend

push T l pop

Each processor possesses a deque
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Scheduling Theory and Implementation

The work-stealing scheduler (3/9)
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Scheduling Theory and Implementation

The work-stealing scheduler (4/9)

H ® ©

0
0 © O

(Moreno Maza) Multithreaded Parallelism and Performance M CS 3101 30/ 52



Scheduling Theory and Implementation

The work-stealing scheduler (5/9)
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Scheduling Theory and Implementation

The work-stealing scheduler (6/9)
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Scheduling Theory and Implementation

The work-stealing scheduler (7/9)
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Scheduling Theory and Implementation

The work-stealing scheduler (8/9)
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Scheduling Theory and Implementation

The work-stealing scheduler (9/9)
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Scheduling Theory and Implementation

Performances of the work-stealing scheduler

Assume that
@ each strand executes in unit time,
@ for almost all “parallel steps” there are at least p strands to run,
@ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

Tp=Ti/p+ O(Tx)

@ During a steal-free parallel steps (steps at which all processors have

work on their deque) each of the p processors consumes 1 work unit.

Thus, there is at most T1/p steal-free parallel steps.

During a parallel step with steals each thief may reduce by 1 the

running time with a probability of 1/p

Thus, the expected number of steals is O(p T).

Therefore, the expected running time
Tp=(T1+O0(pTx))/p=Ti/p+ O(Tx). (1)
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Scheduling Theory and Implementation

Overheads and burden

@ Obviously Ti/p+ To will under-estimate T, in practice.

e Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make T, larger in practice.

@ One may want to estimate the impact of those factors:

@ by improving the estimate of the randomized work-stealing complexity
result

@ by comparing a Cilk++ program with its C++ elision

© by estimating the costs of spawning and synchronizing

@ Cilk++ estimates T, as T, = T1/p + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.
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Measuring Parallelism in Practice

@ Measuring Parallelism in Practice
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Measuring Parallelism in Practice

Cilkview

Burdened
parallelism

@ Cilkview computes work and span to derive upper bounds on
parallel performance

@ Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.
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Measuring Parallelism in Practice

The Fibonacci Cilk++ example

Code fragment

long fib(int n)

{

if (n < 2) return n;
long x, y;

x = cilk_spawn fib(n-1);
y = fib(n-2);

cilk_sync;

return x + y;
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Measuring Parallelism in Practice

Fibonacci program timing

The environment for benchmarking:

— model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

— L2 cache size : 4096 KB
— memory size : 3 GB

#cores = 1 #cores = 2 #cores = 4
n timing(s) | timing(s) | speedup | timing(s) | speedup
30 0.086 0.046 1.870 0.025 3.440
35 0.776 0.436 1.780 0.206 3.767
40 8.931 4.842 1.844 2.399 3.723
45 105.263 54.017 1.949 27.200 3.870
50 1165.000 | 665.115 1.752 | 340.638 3.420
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Quicksort

code in cilk/examples/gsort

void sample_gsort(int * begin, int * end)

{
if (begin '= end) {
--end;
int * middle = std::partition(begin, end,
std: :bind2nd(std: :less<int>(), *end));
using std::swap;
swap (*end, *middle);
cilk_spawn sample_gsort(begin, middle);
sample_gsort (++middle, ++end);
cilk_sync;
}
}
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Quicksort timing

Timing for sorting an array of integers:

#cores = 1 #cores = 2 #cores = 4
# of int timing(s) | timing(s) | speedup | timing(s) | speedup
10 x 10° 1.958 1.016 1.927 0.541 3.619
50 x 100 10.518 5.469 1.923 2.847 3.694
100 x 10° 21.481 11.096 1.936 5.954 3.608
500 x 10° 114.300 57.996 1.971 31.086 3.677
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Measuring Parallelism in Practice

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687 x 837 matrix by a 837 x 1107 matrix

iterative recursive
threshold | st(s) | pt(s) | su st(s) | pt(s) | su
10 1.273 | 1.165 | 0.721 | 1.674 | 0.399 | 4.195
16 1.270 | 1.787 | 0.711 | 1.408 | 0.349 | 4.034
32 1.280 | 1.757 | 0.729 | 1.223 | 0.308 | 3.971
48 1.258 | 1.760 | 0.715 | 1.164 | 0.293 | 3.973
64 1.258 | 1.798 | 0.700 | 1.159 | 0.291 | 3.983
80 1.252 | 1.773 | 0.706 | 1.267 | 0.320 | 3.959

st = sequential time

; pt = parallel time with 4 cores; su = speedup
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Measuring Parallelism in Practice

The cilkview example from the documentation

Using cilk_for to perform operations over an array in parallel:

static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
long x = 15;
static const int nn = 87;
for (long i = 1; i < nn; ++i)
x=x/1+k % i;
return X;
}
int cilk_main(){
for (int j = 0; j < ITERATION; j++)
cilk_for (int i = 0; i < COUNT; i++)
arr[i] += do_work( j * i + i + j);
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Measuring Parallelism in Practice

1

2)

Parallelism Profile

Work : 6,480,801,250 ins
Span : 2,116,801,250 ins
Burdened span : 31,920,801,250 ins
Parallelism : 3.06
Burdened parallelism : 0.20
Number of spawns/syncs: 3,000,000
Average instructions / strand : 720
Strands along span : 4,000,001

Average instructions / strand on span : 529
Speedup Estimate

2 processors: 0.21 - 2.00
4 processors: 0.15 - 3.06
8 processors: 0.13 - 3.06
16 processors: 0.13 - 3.06
32 processors: 0.12 - 3.06
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Measuring Parallelism in Practice

A simple fix

Inverting the two for loops

int cilk_main()
{
cilk_for (int i = 0; i < COUNT; i++)
for (int j = 0; j < ITERATION; j++)
arr[i] += do_work( j * i + i + j);
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Measuring Parallelism in Practice

1

2)

Parallelism Profile

Work : 5,295,801,529 ins
Span : 1,326,801,107 ins
Burdened span : 1,326,830,911 ins
Parallelism : 3.99
Burdened parallelism : 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152
Strands along span : 5

Average instructions / strand on span: 265,360,221
Speedup Estimate

2 processors: 1.40 - 2.00
4 processors: 1.76 - 3.99
8 processors: 2.01 - 3.99
16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99
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Measuring Parallelism in Practice

Timing
#icores = 1 #cores = 2 #cores = 4
version timing(s) | timing(s) | speedup | timing(s) | speedup
original 7.719 9.611 0.803 10.758 0.718
improved 7.471 3.724 2.006 1.888 3.957
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