Exercises for lab 3 of CS3101b

Instructor: Marc Moreno Maza, TA: Xiaohui Chen

Thursday 16 January 2015

1 Exercise 1

The following is a C function for computing the sequence of the Fibonacci numbers (in a naive way).

```c
double fib(int n){
    if(n<=2)
        return(1.0);
    else
        return(fib(n-2)+fib(n-1));
}
```

1. Write a Julia program that computes \(\text{fib}(n) \)

2. Using the `@time` macro, measure the running times of your Julia function \(\text{fib}(n) \) for \(n \) between 35 and 45.

3. If you are a Matlab user, here’s \(\text{fib}(n) \) in Matlab for you to perform the same measurement.

```matlab
function f=fib(n)
    if n <= 2
        f=1.0;
    else
        f=fib(n-1)+fib(n-2);
    end
end
```

2 Exercise 2

The following is a C function for computing the product of two square matrices (in a naive and inefficient way).

```c
#define M 500
void mmult(double A[M][M],double B[M][M], double C[M][M]){```
1. Write a Julia program that computes \texttt{mmult}(A,B) where A and B are two square matrices of the same order M (using the same naive and inefficient algorithm as in C).

2. Using the \texttt{@time} macro, measure the running times of your Julia function \texttt{mmult}(A,B) for M equal to 500, 1000, 1500, 2000. Your input matrices will be randomly generated using \texttt{rand}(M,M).

3. If you are a Matlab user, here’s \texttt{mmult}(A,B,C) in Matlab for you to perform the same measurement.

```matlab
function C=mmult(A,B,C)
 [M,N] = size(A);
 for i=1:M
 for j=1:M
 for k=1:M
 C(i,j) = C(i,j) + A(i,k)*B(k,j);
 end
 end
 end
end
```

3 Exercise 3

The following Julia session implements a famous algorithm for sorting called \textit{quicksort}. Look at its wikipedia page to learn how this algorithm works!

http://en.wikipedia.org/wiki/Quicksort

```julia
function qsort!(a,lo,hi)
 i, j = lo, hi
 while i < hi
 pivot = a[(lo+hi)\texttt{\texttt{\texttt{>>>1}}}] \\
 while i <= j
 while a[i] < pivot; i = i+1; end \\
 while a[j] > pivot; j = j-1; end \\
 if i <= j
```

2
a[i], a[j] = a[j], a[i]
i, j = i+1, j-1
end
end
if lo < j; qsort!(a,lo,j); end
lo, j = i, hi
end
return a
end

function sortperf(n)
qsort!(rand(n), 1, n)
end
@time sortperf(5000)

1. Go through the code and make sure you agree that it is an implementation of the algorithm presented in the wikipedia page.

2. Record the running time of sortperf(2^e*1000000) for e = 0, 1, 2, 3, 4, 5, 6, 7, 8.

3. Are your results coherent with the theoretical prediction (see the section Formal analysis in the wikipedia page) that sorting of an array of size n with quicksort runs in a time asymptotically proportional to O(nlog(n))?

4 Exercise 4

Read the wikipedia page dedicated to the merge-sort algorithm:

http://en.wikipedia.org/wiki/Merge_sort

1. Write a Julia implementing the merge-sort algorithm and following the style and presentation done for quicksort.

2. Compare the running times of both sorting algorithms