
Theory & Practice of High Performance Computing: CS3101. UWO, March, 4, 2015.

Student name:
Student ID number:

Guidelines. The exam is closed book and all notes are forbidden. The duration is 1 hour 40 minutes.
There are 17 pages in the exam. The last three pages are blank: they can be used as scratch paper and

will not be marked. The exam consists of 3 exercises located from Page 2 to Page 14 . The mark
allotment and a suggested time allotment are provided in the table below. All answers should be written
in the answer boxes. No justifications for the answers are needed. You are expected to do this exam on
your own without assistance from anyone else in the class. If possible, please avoid pencils and use pens
with dark ink. Thank you.

Marks. Please, do not write anything in the table below.

Exercise Maximum Mark Expected Time
1 50 50 min .
2 25 25 min.
3 25 25 min.

TOTAL 100 1h40

1

Exercise 1: multiple choice questions

In each case, zero, one or more answers may be correct; indicate all correct answers.

(1) Consider the following Julia function f:

function f(u,v)
n=length(u)
[u[i] + v[i] for i=1:n]

end

which assumes that u and v are vectors of equal length.

(a) the function call f(u,v) prints “Hello World”
(b) the function call f(u,v) does not return anything
(c) the function call f(u,v) returns the sum of the vectors u and v
(d) the function call f(u,v) returns the sum of the vectors u and v provided that their coeffi-

cients are integer numbers.

(2) A multi-core processor is an integrated circuit to which two or more individual processors (called
cores in this sense) have been attached.

(a) True
(b) False

(3) Consider the following Julia function and commands

function producer()
produce("start")
for n=1:2

produce(2n)
end
produce("stop")

end

for x in Task(producer)
println(x)

end

2

After executing them, one sees the following (and only the following) output value

(a) ”Task”

(b)

”start”
2
4
”stop”

(c) ”start”

(d) “producer”

(e) “consumer”

(4) Consider the following CilkPlus function

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

which computes the n-th Fibonacci number. For the function call fib(n) to execute correctly,
the corresponding code must run on:

(a) a multi-core processors with at least n cores,
(a) a multi-core processors with at least 2n cores,
(c) any multi-core processor systems where the CilkPlus run-time is installed.

3

(5) Consider a CilkPlus program whose DAG has work T1 = 96 and span T∞ = 10. On a
multi-core processor with P = 24 cores, the DAG model (as discussed in class) predicts that the
minimum running time TP on P cores is at least:

(a) 4
(b) 10

(6) Consider a CilkPlus program whose DAG has work T1 = 96 and span T∞ = 2. On a multi-core
processor with P = 24 cores, the DAG model (as discussed in class) predicts that the minimum
running time TP on P cores is at least:

(a) 4
(b) 2

(7) Consider the following Julia session where two methods are proposed for computing the square
of a random matrix.

#method 1
A = rand(1000,1000)
Bref = @spawn Aˆ2
fetch(Bref)

method 2
Bref = @spawn rand(1000,1000)ˆ2
fetch(Bref)

(a) In the first method, a random matrix is constructed locally, then sent to another processor
where it is squared.

(b) In the first method, a random matrix is both constructed and squared on another processor.
(c) In the second method, a random matrix is constructed locally, then sent to another processor

where it is squared.
(d) In the second method, a random matrix is both constructed and squared on another processor.

4

(8) Consider the following Julia session:

n = @parallel (+) for i=1:10
i

end

After executing the above, the value of n is:

(a) 10
(b) 55
(c) the number of processors involved in this Julia session
(d) a remote reference

(9) Consider the distributed array da defined as follows

da = @parallel [2 * i for i = 1:10]

and assume that 2 workers, with numbers 2 and 3, own da: Worker 2 owns the first 5 elements
and Worker 3 owns the last ones. What does the following command return?

fetch(@spawnat 2 da[3])

(a) 6
(b) 2
(c) 3
(d) Bound error

(10) Consider again the distributed array da defined as follows

da = @parallel [2 * i for i = 1:10]

and assume again that 2 workers, with numbers 2 and 3, own da: Worker 2 owns the first 5
elements and Worker 3 owns the last ones. What does the following command return?

[(@spawnat p sum(localpart(da))) for p=procs(da)]

(a) An array of two remote references
(b) [2 3]

5

(11) Consider again the distributed array da defined as follows

da = @parallel [2 * i for i = 1:10]

and assume again that 2 workers, with numbers 2 and 3, own da: Worker 2 owns the first 5
elements and Worker 3 owns the last ones. What does the following command return?

map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

(a) A 2-element array with entries 30 and 80
(b) A 2-element array with remote references as entries

(12) Consider again the distributed array da defined as follows

da = @parallel [2 * i for i = 1:10]

and assume again that 2 workers, with numbers 2 and 3, own da: Worker 2 owns the first 5
elements and Worker 3 owns the last ones. What does the following command return?

reduce(+, map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da)]))

(a) 2
(b) 110

(13) Consider the following Julia functions defined in the same Julia session, which is using 4
workers in addition to the master.

@everywhere function fib(n)
if (n < 2) then

return n
else return fib(n-1) + fib(n-2)
end

end

6

@everywhere function fib_parallel(n)
if (n < 40) then

return fib(n)
else

x = @spawn fib_parallel(n-1)
y = fib_parallel(n-2)
return fetch(x) + y

end
end

What is the value fib parallel(4)?

(a) 3
(b) 5
(c) 8

For each of the following pseudo-code (using the same syntax and semantics as Cilk++ or CilkPlus)
choose the proper estimate(s) for the work or span using the big-O notation. Note that these estimates
depend on the following:

• n which is an int variable,

• WA and SA which are the work and span of the function call A(), respectively

Note also that void A (void) is a C++ function.

(14) /* Program 1 */

for (int i = 0; i < n ; i++) {
A();

}

What is the work of the above code?

(a) n×WA

(b) WA

7

(15) /* Program 2 */

for (int i = 0; i < n ; i++) {
A();

}

What is the span of the above code?

(a) n× SA

(b) SA

(16) /* Program 3 */

cilk_for (int i = 0; i < n ; i++) {
A();

}

What is the work of the above code?

(a) n×WA

(b) WA × log(n)

(17) /* Program 4 */

cilk_for (int i = 0; i < n ; i++) {
A();

}

What is the span of the above code?

(a) SA × log(n)
(b) SA + log(n)

8

(18)

1. /* Program 5 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int k = 0; k < n ; k++) {

for (int j = 0; j < 4; j++) {
A();

}
}

}

What is the work of the above code?

(a) O(n3 ×WA)
(b) O(WA × n2 log(n))

(19)

2. /* Program 6 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int k = 0; k < n ; k++) {

for (int j = 0; j < 4; j++) {
A();

}
}

}

What is the span of the above code?

(a) O(n+ SA)
(b) O(log(n) + SA)

9

Exercise 2: Julia questions with short answers

(1) Write a Julia function dotproduct serial(U,V) computing the dot product of the vectors
of U and V in a serial fashion, that is, without using any parallel constructs.

function dotproduct serial(u,v)
n = length(u) # length of the vector
sum = 0
for i=1:n
sum = sum + u[i] * v[i]
end
sum
end

test
u=Array(Int,4)
v=Array(Int,4)
for i =1:4
u[i] = i
v[i] = i+1
end

dotproduct serial(u,v)

(2) Write a Julia function dotproduct parallel reduction(U,V) computing the dot prod-
uct of the vectors of U and V using parallel reduction and thus Julia’s construct @parallel.

10

function dotproduct parallel reduction(u, v)
n = length(u) # length of the vector
sum = @parallel (+) for i = 1:n
u[i] * v[i]
end

sum
end

test
u=Array(Int,4)
v=Array(Int,4)
for i =1:4
u[i] = i
v[i] = i+1
end

dotproduct parallel reduction(u, v)

(3) Next, write a Julia function dotproduct parallel dnc(U,V) computing the dot product
of the vectors of U and V using a divide-and-conquer approach (with a base case of your choice).
For this function, we shall assume that U and V are shared arrays.

11

@everywhere function dotproduct parallel dnc(u, v)
n = length(u) # midlle point
if n ==1
return u[1]*v[1]
end

m = floor(Integer, n/2) # midlle point
k = m+1

f = @spawn dotproduct parallel dnc(u[1:m], v[1:m])
s = dotproduct parallel dnc(u[k:n], v[k:n])

return fetch(f) + s
end

test
u = SharedArray(Int, (1,4), init=true)
v = SharedArray(Int, (1,4), init=true)
for i =1:4
u[i] = i
v[i] = i+1
end
dotproduct parallel dnc(u, v)

(4) Consider the Julia’s function below for multiplying two square matrices A and B of order n.
Using Julia’s construct @spawnat and fetch make a parallel version of that function that
uses 4 processors.

function four_quadrant_mat_mul_serial(A, B, n)

C = zeros(n, n)
d = div(n,2)
e = d+1
C[1:d, 1:d] = A[1:d, 1:d] * B[1:d, 1:d] +

A[1:d, e:n] * B[e:n, 1:d]
C[1:d, e:n] = A[1:d, 1:d] * B[1:d, e:n] +

12

A[1:d, e:n] * B[e:n, e:n]
C[e:n, 1:d] = A[e:n, 1:d] * B[1:d, 1:d] +

A[e:n, e:n] * B[e:n, 1:d]
C[e:n, e:n] = A[e:n, 1:d] * B[1:d, e:n] +

A[e:n, e:n] * B[e:n, e:n]
C

end

@everywhere function four quadrant mat mul serial(A, B, n)

C = zeros(n, n)
d = div(n,2)
e = d+1
f = @spawn A[1:d, 1:d] * B[1:d, 1:d] + A[1:d, e:n] * B[e:n, 1:d]
g = @spawn A[1:d, 1:d] * B[1:d, e:n] + A[1:d, e:n] * B[e:n, e:n]
h = @spawn A[e:n, 1:d] * B[1:d, 1:d] + A[e:n, e:n] * B[e:n, 1:d]
j = A[e:n, 1:d] * B[1:d, e:n] + A[e:n, e:n] * B[e:n, e:n]

C[1:d, 1:d] = fetch(f)
C[1:d, e:n] = fetch(g)
C[e:n, 1:d] = fetch(h)
C
end

13

Exercise 3: writing a parallel CilkPlus function

Consider the problem of multiplying an n×m matrix A by an m-vector b. The resulting n-vector d
is given by the equation

d[i] =
m∑
j=1

A[i][j] · b[j],

for i = 1, 2, . . . , n.

(1) For the following pseudo-code (using the same syntax and semantics as CilkPlus determine the
work and the span

/* Program 1 */
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j)

d[i] += A[i][j] * b[j];

}

work: O(m*n)
span: O(m*n)

(2) Same question as above for the following CilkPlus pseudo-code

/* Program 2 */
cilk for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j)

d[i] += A[i][j] * b[j];

}

14

work: O(m*n)
span: O(m + log(n))

(3) Complete the following CilkPlus pseudo-code such that it realizes a divide-and-conquer imple-
mentation of the multiplication of an n×m matrix A by an m-vector b. Note that two lines (and
only two lines) of pseudo-code need to be completed.

/* Program 3 */
MAT-VEC (d, A, b, m, i, j) {

if (i == j) {
for (int k = 1; k < m; ++k)
d[i] += A[i][k] * b[k];

}
else {

k = b (i+j)/2 c;
/* The line below needs to be completed */
cilk spawn MAT-VEC (d, A, b, m, i, k);
MAT-VEC (d, A, b, m, k+1, j);
/* The line below needs to be completed */
cilk sync;

}
}

(4) When the function MAT-VEC (d, A, b, m, 1, n) is performed, how many recursive calls
take place along the critical path? Deduce an estimate of the span of the algorithm completed at
the previous question.

15

There are log(n) recursive calls along the critical path.

S(n) = O(log(n)) +O(m)

O(log(n)) : the heigh of the recursive spawning tree,

O(m) is the executing of the for-loop.

Note that the for-loop only executed at the bottom of recursion tree (after log(n)
recursive calls), each by an individual processor.

16

17

18

