CS3350B

Computer Architecture
Winter 2015

Lecture 3.1: Memory Hierarchy:
What and Why?

Marc Moreno Maza

[Adapted from lectures on
Computer Organization and Design,
Patterson & Hennessy, 5" edition, 2014]

http://www.cse.psu.edu/~

Components of a Computer

Processor

Control

Datapath

L
[

Devices

Input

Output

Fast and Small

Memory
S |]=
0O o 2
= S o ~=0
O 5 Q,go
= 22 a
<

Slow and Large

e

o
=
#
0
o

S

S
©
™
—i

Nehalem Die Photo

1 ¥ e
Jpeasi. ooy [,. ety
‘ ==y

{ i} ’ i
L T L T i) b 4 s
e T T

!
rd]

Core Area |
Breakdown Memory

Controller [

32KB I$ per core
32KB D$ per core
512KB L2$ per core
Share one 8-MB L3$

- .. ————— W1

- |

‘J) .l“ IL.
l'li n'
| d l :
| o

,.__,. Lot et

Execunon
Unlfs THE

Ccache &
Interrupt
_Servncmg

Two Machines’ Cache Parameters

Intel Nehalem

AMD Barcelona

L1 cache
organization & size

Split 1I$ and D$; 32KB for
each per core; 64B blocks

Split 1I$ and D$; 64KB for each
per core; 64B blocks

L1 associativity

4-way (1), 8-way (D) set
assoc.; ~LRU replacement

2-way set assoc.; LRU
replacement

L1 write policy

write-back, write-allocate

write-back, write-allocate

L2 cache
organization & size

Unified; 256MB (0.25MB) per
core: 64B blocks

Unified; 512KB (0.5MB) per
core: 64B blocks

L2 associativity

8-way set assoc.; ~LRU

16-way set assoc.; ~LRU

L2 write policy

write-back

write-back

L2 write policy

write-back, write-allocate

write-back, write-allocate

L3 cache
organization & size

Unified; 8192KB (8MB)
shared by cores; 64B blocks

Unified; 2048KB (2MB) shared
by cores; 64B blocks

L3 associativity

16-way set assoc.

32-way set assoc.; evict block
shared by fewest cores

L3 write policy

write-back, write-allocate

write-back: write-allocate

The “Memory Wall”

0 Processor vs DRAM speed disparity continues to grow

o
-
o

100 -

- Core
—— Memory

[N
Clocks per DRAM access

Clocks per instruction
H
()

0.1 -

0.01 |
VAX/1980 PPro/1996 2010+

The Principle of Locality

0 Program likely to access a relatively small portion of the

address space at any instant of time

e Temporal Locality (locality in time): If a memory location is
referenced then it will tend to be referenced again soon

e Spatial Locality (locality in space): If a memory location is
referenced, the locations with nearby addresses will tend to be

referenced soon

0 What program structures lead to temporal and spatial locality in

code? In data?

Locality Example: sum

« Data for

— Reference array elements in succession

=0;
(1i=0; i<n; i++)
sum += a[i];

return sum;

(stride-1 reference pattern): Spatial locality
—Reference sum each iteration: Temporal locality
 Instructions
—Reference instructions in sequence: Spatial locality
— Cycle through loop repeatedly: Temporal locality

Locality Exercise 1

0 Question: Does this function in C have good locality?

int sumarrayrows (int a[M] [N])

{

int i, j, sum = 0;

for (1 = 0; 1 < M; i++)
for (j = 0; j < N; j++)
sum += a[i1][]]~
return sum;

Locality Exercise 2

0 Question: Does this function in C have good locality?

int sumarraycols (int a[M] [N])

{

int i, j, sum = 0;

for (j = 0; jJ < N; j++)
for (1 = 0; 1 < M; i++)
sum += a[i1][]]~
return sum;

Locality Exercise 3

0 Question: Can you permute the loops so that the
function scans the 3D array a [] with a stride-1

reference pattern (and thus has good spatial locality)?

int sumarray3d(int a[M] [N] [N])
{

int 1, j, k, sum = 0;

for (1 = 0; 1 < N; i++)
for (jJ = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += al[k] [1][]]~
return sum;

Why Memory Hierarchies?

0 Some fundamental and enduring properties of hardware
and software:

e Fast storage technologies (SRAM) cost more per byte and
have less capacity

e Gap between CPU and main memory (DRAM) speed is
widening

e Well-written programs tend to exhibit good locality

0 These fundamental properties complement each other
beautifully

0 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy,
to obtain the effect of a large, cheap, fast memory

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor
In access
time

/

Processor

14-8 bytes (word)

L%$
+8-32
L2$

*
v 1to 4 block
Main Memory

¢

es (block)

»
»

&
<

(Relative) size of the memory at each level

‘1,024+ bytes (disRsector 3
Secondary Memory

Inclusive —

what is in L1$
IS a subset of
what is in L2$
IS a subset of
what is in MM
IS a subset of
what is in SM

page)

* CPU looks first for data in L1, then in L2, ..., then in main memary.

Caches

0 Cache: Smaller, faster storage device that acts as
staging area for subset of data in a larger, slower device
0 Fundamental idea of a memory hierarchy:
e For each k, the faster, smaller device at level k serves as
cache for larger, slower device at level k+1
a2 Why do memory hierarchies work?

e Programs tend to access data at level k more often than
they access data at level k+1

e Thus, storage at level k+1 can be slower, and thus larger
and cheaper per bit

e Net effect: Large pool of memory that costs as little as
the cheap storage near the bottom, but that serves data to
programs at = rate of the fast storage near the top.

14

Caching in a Memory Hierarchy

Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

levels in block-sized transfer units

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Level k: | [4 9 10 3
Data is copied between
10
0 1 2 3
Level k+1

4) 6 4
8 9 10 11
12 13 14 15

15

General Caching Concepts

A

0 Program needs object d, which is stored in

o Request some block b
12
0 L 5 ;s 0 Cache hit
Level | SRR 14 |[3 e Program finds b in the cache at level k.
K: _ e.g., block 14
T | Request Q Cache miss
12 e bis not at level k, so level k cache must
fetch it from level k+1. e.g., block 12
e If level k cache is full, then some current
0 1 > 3 block must be replaced (evicted). Which
one is the “victim”?
Level 4* S 6 7 . o
- Placement (mapping) policy: where can
k+1: 3 9 10 11 the new block go? e.g., b mod 4
B 13 14 15 - Replacement policy: which block should

be evicted? e.g., LRU

16

General Caching Concepts

0 Types of cache misses:

e Cold (compulsory) miss
- Cold misses occur because the cache is empty

e Conflict miss

- Most caches limit blocks at level k to a small subset
(sometimes a singleton) of the block positions at level k+1

- e.g. block i at level k+1 must be placed in block (i mod 4) at
level k

- Conflict misses occur when the level k cache is large
enough, but multiple data objects all map to the same level k
block

- e.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every
time
e Capacity miss

- Occurs when the set of active cache blocks (working set) is
larger than the cache

17

More Caching Concepts

0 Hit Rate: the fraction of memory accesses found in a
level of the memory hierarchy

e Hit Time: Time to access that level which consists of
Time to access the block + Time to determine hit/miss

0 Miss Rate: the fraction of memory accesses not found in
a level of the memory hierarchy = 1 - (Hit Rate)

e Miss Penalty: Time to replace a block in that level with the
corresponding block from a lower level which consists of

Time to access the block in the lower level
+ Time to transmit that block to the level that experienced the miss
+ Time to insert the block in that level
+ Time to pass the block to the requestor

Hit Time << Miss Penalty

18

Examples of Caching in the Hierarchy

Cache Type What Cached Where Cached Latency Managed
(cycles) By
Registers 4-byte word CPU registers 0.5 | Compiler
TLB Address On-Chip TLB 0.5 | Hardware
translations
L1 cache 32-byte block On-Chip L1 Hardware
L2 cache 32-byte block On/Off-Chip L2 10 | Hardware
Virtual Memory | 4-KB page Main memory 100 | Hardware+
OS
Buffer cache Parts of files Main memory 100 | OS
Network buffer | Parts of files Local disk 10,000,000 | AFS/NFS
cache client
Browser cache | Web pages Local disk 10,000,000 | Web
browser
Web cache Web pages Remote server 1,000,000,000 | Web proxy

disks

sServer

Claim

0 Being able to look at code and get
qualitative sense of its locality is key
skill for professional programmer

0 Examples:
e BLAS (Basic Linear Algebra Subprograms)

e SPIRAL, Software/Hardware Generation for DSP
Algorithms

e FFTW, by Matteo Frigo and Steven G, Johnson

e Cache-Oblivious Algorithms, by Matteo Frigo, Charles E.
Leiserson, Harald Prokop, and Sridhar Ramachandran,
1999

Memory Performance

0 Cache Miss Rate: number of cache misses/total number
of cache references (accesses)

- Miss rate + hit rate = 1.0 (100%)

0 Miss Penalty: the difference between lower level access
time and cache access time

0 Average Memory Access Time (AMAT) IS the average time
to access memory considering both hits and misses

AMAT = Time for a Hit + Miss Rate * Miss Penalty

0 What is the AMAT for a processor with a 200 ps clock, a
miss penalty of 50 clock cycles, a miss rate of 0.02 misses
per instruction and a cache access time of 1 clock cycle?

1+ 0.02 *50 = 2 clock cycles, or 2 * 200 = 400 ps

21

Measuring Cache Performance — Effect on CPI

0 Assuming cache hit costs are included as part of the
normal CPU execution cycle, then

CPU time = IC x CPI x CC
=IC x (Cglioleal + Average memory-stall cycles) x CC
CPI,,

stall

A simple model for Memory-stall cycles:
Memory-stall cycles = #accesses/instruction x miss rate x miss penalty

This ignores extra costs of write misses.

22

Impacts of Cache Performance

0 Relative cache miss penalty increases as processor
performance improves (faster clock rate and/or lower CPI)

e Memory speed unlikely to improve as fast as processor cycle
time. When calculating CPlI,, cache miss penalty is measured
In processor clock cycles needed to handle a miss

e Lower the CPIl.,, more pronounced impact of stalls

a Processor with a CPl,,, of 2, a 100 cycle miss penalty, 36%
load/store instr's, and 2% instruction cache and 4% data cache
MISS rates

e Memory-stall cycles = 2% x 100 + 36% % 4% x 100 = 3.44

e SO CPI = 2+344=5.44

stalls

e More than twice the CPI

ideal !

a What if the CPl,,,, Is reduced to 17

0 What if the data cache miss rate went up by 1%?

Multiple Cache Levels

CPU Mem
Access
—

L2$

L1$

Miss

4 Hit

v

Miss

Hit

Main Memory

Path of Data Back to CPU

<€

24

Multiple Cache Levels

2 With advancing technology, have more room on die for bigger
L1 caches and for second level cache — normally a unified L2
cache (i.e., it holds both instructions and data,) and in some
cases even a unified L3 cache

a New AMAT Calculation:

AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty,
L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

and so forth (final miss penalty is Main Memory access time)

25

New AMAT Example

0 1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate.
0 100 cycle main memory access time

a Without L2 cache:
AMAT =1+ .02*100 =3

a With L2 cache:
AMAT =1+ .02*(5 + .05*100) = 1.2

26

Summary

2 Wanted: effect of a large, cheap, fast memory

aApproach: Memory Hierarchy

e Successively lower levels contain “most used” data
from next higher level

e Exploits temporal & spatial locality of programs

e Do the.common case fast, worry less about the
exceptions (RISC design principle)

a2 Challenges to programmer:
e Develop cache friendly (efficient) programs

Layout of C Arrays in Memory (hints for the exercises)

0 C arrays allocated in row-major order
e Each row in contiguous memory locations

0 Stepping through columns in one row:
e for (1 = 0; 1 < N; i++)
sum += a[0][i];
e Accesses successive elements of size k bytes
e If block size (B) > k bytes, exploit spatial locality

- compulsory miss rate = k bytes / B

0 Stepping through rows in one column:
e for (i = 0; 1 < n; 1++)
sum += a[i1][0];
e Accesses distant elements

e No spatial locality!
- Compulsory miss rate = 1 (i.e. 100%)

28

