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Components of a Computer 
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Two Machines’ Cache Parameters 

Intel Nehalem AMD Barcelona 

L1 cache 

organization & size 

Split I$ and D$; 32KB for 

each per core; 64B blocks 

Split I$ and D$; 64KB for each 

per core; 64B blocks 

L1 associativity 4-way (I), 8-way (D) set 

assoc.; ~LRU replacement 

2-way set assoc.; LRU 

replacement 

L1 write policy write-back, write-allocate write-back, write-allocate 

L2 cache 

organization & size 

Unified; 256MB (0.25MB) per 

core; 64B blocks 

Unified; 512KB (0.5MB) per 

core; 64B blocks 

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU 

L2 write policy write-back write-back 

L2 write policy write-back, write-allocate write-back, write-allocate 

L3 cache 

organization & size 

Unified; 8192KB (8MB) 

shared by cores; 64B blocks 

Unified; 2048KB (2MB) shared 

by cores; 64B blocks 

L3 associativity 16-way set assoc. 32-way set assoc.; evict block 

shared by fewest cores 

L3 write policy write-back, write-allocate write-back; write-allocate 
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The “Memory Wall” 

 Processor vs DRAM speed disparity continues to grow 
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The Principle of Locality 

 Program likely to access a relatively small portion of the 
address space at any instant of time 

 Temporal Locality (locality in time): If a memory location is 

referenced then it will tend to be referenced again soon 

 Spatial Locality (locality in space): If a memory location is 

referenced, the locations with nearby addresses will tend to be 

referenced soon 

 What program structures lead to temporal and spatial locality in 

code? In data? 

 
 Locality Example: 

• Data 

– Reference array elements in succession 

(stride-1 reference pattern): 

– Reference sum each iteration: 

• Instructions 

– Reference instructions in sequence: 

– Cycle through loop repeatedly:  

sum = 0; 

for (i=0; i<n; i++) 

 sum += a[i]; 

return sum; 
Spatial locality 

Spatial locality 

Temporal locality 

Temporal locality 
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Locality Exercise 1 

 Question: Does this function in C have good locality? 

int sumarrayrows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 

9 



Locality Exercise 2 

 Question: Does this function in C have good locality? 

int sumarraycols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 
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Locality Exercise 3 

 Question:  Can you permute the loops so that the 
function scans the 3D array a[] with a stride-1 
reference pattern (and thus has good spatial locality)? 

int sumarray3d(int a[M][N][N]) 

{ 

    int i, j, k, sum = 0; 

 

    for (i = 0; i < N; i++) 

        for (j = 0; j < N; j++) 

            for (k = 0; k < M; k++) 

                sum += a[k][i][j]; 

    return sum; 

} 
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Why Memory Hierarchies? 

 Some fundamental and enduring properties of hardware 
and software: 

 Fast storage technologies (SRAM) cost more per byte and 
have less capacity 

 Gap between CPU and main memory (DRAM) speed is 
widening 

 Well-written programs tend to exhibit good locality 
 

 These fundamental properties complement each other 
beautifully 
 

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy, 
 to obtain the effect of a large, cheap, fast memory 
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Characteristics of the Memory Hierarchy 

Increasing 

distance 

from the 

processor 

in access 

time 

L1$ 

L2$ 

Main Memory 

Secondary  Memory 

Processor 

(Relative) size of the memory at each level 

Inclusive – 

what is in L1$ 

is a subset of 

what is in L2$  

is a subset of 

what is in MM 

is a subset of 

what is in SM 

4-8 bytes (word) 

1 to 4 blocks 

1,024+ bytes (disk sector = page) 

8-32 bytes (block) 

• CPU looks first for data in L1, then in L2, …, then in main memory. 
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Caches 

 Cache: Smaller, faster storage device that acts as 
staging area for subset of data in a larger, slower device 

 Fundamental idea of a memory hierarchy: 

 For each k, the faster, smaller device at level k serves as 
cache for larger, slower device at level k+1 

 Why do memory hierarchies work? 

 Programs tend to access data at level k more often than 
they access data at level k+1 

 Thus, storage at level k+1 can be slower, and thus larger 
and cheaper per bit 

 Net effect:  Large pool of memory that costs as little as 
the cheap storage near the bottom, but that serves data to 
programs at ≈ rate of the fast storage near the top. 
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Caching in a Memory Hierarchy 
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General Caching  Concepts 

 Program needs object d, which is stored in 
some block b 

 Cache hit 

 Program finds  b  in the cache at level k.  
e.g.,  block 14 

 Cache miss 

 b is not at level k, so level k cache  must 
fetch it from level k+1.  e.g.,  block 12 

 If level k cache is full, then some current 
block must be replaced (evicted).  Which 
one is the “victim”?  

- Placement (mapping) policy: where can 
the new block go? e.g., b mod 4 

- Replacement policy: which block should 
be evicted? e.g., LRU 
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General Caching Concepts 

 Types of cache misses: 

 Cold (compulsory) miss 

- Cold misses occur because the cache is empty 

 Conflict miss 

- Most caches limit blocks at level k to a small subset 
(sometimes a singleton) of the block positions at level k+1 

- e.g. block i at level k+1 must be placed in block (i mod 4) at 
level k 

- Conflict misses occur when the level k cache is large 
enough, but multiple data objects all map to the same level k 
block 

- e.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every 
time 

 Capacity miss 

- Occurs when the set of active cache blocks (working set) is 
larger than the cache 
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More Caching Concepts 

 Hit Rate: the fraction of memory accesses found in a 

level of the memory hierarchy 

 Hit Time:  Time to access that level which consists of 

  Time to access the block + Time to determine hit/miss 
 

 Miss Rate: the fraction of memory accesses not found in 

a level of the memory hierarchy       1 - (Hit Rate) 

 Miss Penalty: Time to replace a block in that level with the 

corresponding block from a lower level which consists of 

      Time to access the block in the lower level  

+ Time to transmit that block to the level that experienced the miss  

+ Time to insert the block in that level   

+ Time to pass the block to the requestor 
 

Hit Time << Miss Penalty 
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Examples of Caching in the Hierarchy 
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Claim 

 Being able to look at code and get 
qualitative sense of its locality is key 
skill for professional programmer 
 

 Examples: 

 BLAS (Basic Linear Algebra Subprograms) 

 SPIRAL, Software/Hardware Generation for DSP 
Algorithms 

 FFTW, by Matteo Frigo and Steven G, Johnson 

 Cache-Oblivious Algorithms, by Matteo Frigo, Charles E. 
Leiserson, Harald Prokop, and Sridhar Ramachandran, 
1999 

 … 
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Memory Performance 

 Average Memory Access Time (AMAT) is the average time 

to access memory considering both hits and misses 

AMAT =  Time for a Hit  +  Miss Rate * Miss Penalty 

 What is the AMAT for a processor with a 200 ps clock, a 

miss penalty of 50 clock cycles, a miss rate of 0.02 misses 

per instruction and a cache access time of 1 clock cycle? 

 

 
1 + 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps 

 Cache Miss Rate: number of cache misses/total number 
of cache references (accesses) 

• Miss rate + hit rate = 1.0 (100%) 

 Miss Penalty: the difference between lower level access 
time and cache access time 
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Measuring Cache Performance – Effect on CPI 

 Assuming cache hit costs are included as part of the 
normal CPU execution cycle, then 

 CPU time = IC × CPI × CC 

                  = IC × (CPIideal + Average memory-stall cycles) × CC 

CPIstall 

A simple model for Memory-stall cycles: 

Memory-stall cycles = #accesses/instruction × miss rate × miss penalty 

 

This ignores extra costs of write misses. 
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Impacts of Cache Performance 

 Relative cache miss penalty increases as processor 
performance improves (faster clock rate and/or lower CPI) 

 Memory speed unlikely to improve as fast as processor cycle 
time. When calculating CPIstall, cache miss penalty is measured 
in processor clock cycles needed to handle a miss 

 Lower the CPIideal, more pronounced impact of stalls 

 Processor with a CPIideal of 2, a 100 cycle miss penalty, 36% 
load/store instr’s, and 2% instruction cache and 4% data cache 
miss rates 

 Memory-stall cycles = 2% × 100 + 36% × 4% × 100 = 3.44 

 So               CPIstalls  =  2 + 3.44 = 5.44 

 More than twice the CPIideal ! 

 What if the CPIideal is reduced to 1?    

 What if the data cache miss rate went up by 1%?   
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Multiple Cache Levels 
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Multiple Cache Levels 

 With advancing technology, have more room on die for bigger 
L1 caches and for second level cache – normally a unified L2 
cache (i.e., it holds both instructions and data,) and in some 
cases even a unified L3 cache 
 

 New AMAT Calculation: 
  
              AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty, 
L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty 
 
and so forth (final miss penalty is Main Memory access time) 
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New AMAT Example 

 1 cycle L1 hit time, 2% L1 miss rate,  

 5 cycle L2 hit time, 5% L2 miss rate. 

 100 cycle main memory access time 

 Without L2 cache: 
  AMAT = 1 + .02*100 = 3 

 With L2 cache: 
  AMAT = 1 + .02*(5 + .05*100) = 1.2 
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Summary 

Wanted: effect of a large, cheap, fast memory 
 

Approach: Memory Hierarchy 
 Successively lower levels contain “most used” data 

from next higher level 

 Exploits temporal & spatial locality of programs  

 Do the common case fast, worry less about the 
exceptions (RISC design principle) 

 

Challenges to programmer: 

Develop cache friendly (efficient) programs 
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Layout of C Arrays in Memory (hints for the exercises) 

 C arrays allocated in row-major order 

 Each row in contiguous memory locations 

 Stepping through columns in one row: 

 for (i = 0; i < N; i++) 

sum += a[0][i]; 

 Accesses successive elements of size k bytes 

 If block size (B) > k bytes, exploit spatial locality 

- compulsory miss rate = k bytes / B 

 Stepping through rows in one column: 

 for (i = 0; i < n; i++) 

sum += a[i][0]; 

 Accesses distant elements 

 No spatial locality! 

- Compulsory miss rate = 1 (i.e. 100%) 28 


