
CS3350B
 Computer Architecture

Winter 2015

Lecture 3.1: Memory Hierarchy:

What and Why?

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2014]

0

http://www.cse.psu.edu/~

Components of a Computer

1

 Processor

Control

Datapath

Memory

Devices

Input

Output

C
a
c
h

e

M
a

in

M
e
m

o
ry

S
e
c
o

n
d

a
ry

M
e
m

o
ry

(D
is

k
)

Fast and Small Slow and Large

2

Nehalem Die Photo

Shared L3 Cache

Core Core Core Core
M

e

m

o

r

y

Q

u

e

u

e

M

i

s

c

I

O

M

i

s

c

I

O

Q P I

Q P I

Memory Controller

18.9 mm (0.75 inch)

1
3
.6

 m
m

 (
0
.5

4
 i
n
c
h

)

3

Core Area
Breakdown

Execution

Units

L2

Cache &

Interrupt

Servicing

L1

Inst

cache

& Inst

Fetch

L1

Data

cache

L3 Cache

Memory

Controller

Load

Store

Queue

32KB I$ per core

32KB D$ per core

512KB L2$ per core

Share one 8-MB L3$

Two Machines’ Cache Parameters

Intel Nehalem AMD Barcelona

L1 cache

organization & size

Split I$ and D$; 32KB for

each per core; 64B blocks

Split I$ and D$; 64KB for each

per core; 64B blocks

L1 associativity 4-way (I), 8-way (D) set

assoc.; ~LRU replacement

2-way set assoc.; LRU

replacement

L1 write policy write-back, write-allocate write-back, write-allocate

L2 cache

organization & size

Unified; 256MB (0.25MB) per

core; 64B blocks

Unified; 512KB (0.5MB) per

core; 64B blocks

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU

L2 write policy write-back write-back

L2 write policy write-back, write-allocate write-back, write-allocate

L3 cache

organization & size

Unified; 8192KB (8MB)

shared by cores; 64B blocks

Unified; 2048KB (2MB) shared

by cores; 64B blocks

L3 associativity 16-way set assoc. 32-way set assoc.; evict block

shared by fewest cores

L3 write policy write-back, write-allocate write-back; write-allocate
5

The “Memory Wall”

 Processor vs DRAM speed disparity continues to grow

0.01

0.1

1

10

100

1000

VAX/1980 PPro/1996 2010+

Core

Memory

C
lo

c
k
s
 p

e
r

in
s
tr

u
c
ti
o

n

C
lo

c
k
s
 p

e
r

D
R

A
M

 a
c
c
e

s
s

7

The Principle of Locality

 Program likely to access a relatively small portion of the
address space at any instant of time

 Temporal Locality (locality in time): If a memory location is

referenced then it will tend to be referenced again soon

 Spatial Locality (locality in space): If a memory location is

referenced, the locations with nearby addresses will tend to be

referenced soon

 What program structures lead to temporal and spatial locality in

code? In data?

 Locality Example:

• Data

– Reference array elements in succession

(stride-1 reference pattern):

– Reference sum each iteration:

• Instructions

– Reference instructions in sequence:

– Cycle through loop repeatedly:

sum = 0;

for (i=0; i<n; i++)

 sum += a[i];

return sum;
Spatial locality

Spatial locality

Temporal locality

Temporal locality

8

Locality Exercise 1

 Question: Does this function in C have good locality?

int sumarrayrows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

9

Locality Exercise 2

 Question: Does this function in C have good locality?

int sumarraycols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

10

Locality Exercise 3

 Question: Can you permute the loops so that the
function scans the 3D array a[] with a stride-1
reference pattern (and thus has good spatial locality)?

int sumarray3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

11

Why Memory Hierarchies?

 Some fundamental and enduring properties of hardware
and software:

 Fast storage technologies (SRAM) cost more per byte and
have less capacity

 Gap between CPU and main memory (DRAM) speed is
widening

 Well-written programs tend to exhibit good locality

 These fundamental properties complement each other
beautifully

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy,
 to obtain the effect of a large, cheap, fast memory

12

Characteristics of the Memory Hierarchy

Increasing

distance

from the

processor

in access

time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive –

what is in L1$

is a subset of

what is in L2$

is a subset of

what is in MM

is a subset of

what is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

• CPU looks first for data in L1, then in L2, …, then in main memory.
13

Caches

 Cache: Smaller, faster storage device that acts as
staging area for subset of data in a larger, slower device

 Fundamental idea of a memory hierarchy:

 For each k, the faster, smaller device at level k serves as
cache for larger, slower device at level k+1

 Why do memory hierarchies work?

 Programs tend to access data at level k more often than
they access data at level k+1

 Thus, storage at level k+1 can be slower, and thus larger
and cheaper per bit

 Net effect: Large pool of memory that costs as little as
the cheap storage near the bottom, but that serves data to
programs at ≈ rate of the fast storage near the top.

14

Caching in a Memory Hierarchy

Level k+1:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage

device at level k+1 is partitioned

into blocks.

Data is copied between

levels in block-sized transfer units

8 9 14 3

Smaller, faster, more expensive

device at level k caches a

subset of the blocks from level k+1
Level k:

4

4

4 10

10

10

15

Request

14

Request

12

General Caching Concepts

 Program needs object d, which is stored in
some block b

 Cache hit

 Program finds b in the cache at level k.
e.g., block 14

 Cache miss

 b is not at level k, so level k cache must
fetch it from level k+1. e.g., block 12

 If level k cache is full, then some current
block must be replaced (evicted). Which
one is the “victim”?

- Placement (mapping) policy: where can
the new block go? e.g., b mod 4

- Replacement policy: which block should
be evicted? e.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level

 k:

Level

k+1:

14 14

12

14

4*

4* 12

12

0 1 2 3

Request

12

4* 4* 12

16

General Caching Concepts

 Types of cache misses:

 Cold (compulsory) miss

- Cold misses occur because the cache is empty

 Conflict miss

- Most caches limit blocks at level k to a small subset
(sometimes a singleton) of the block positions at level k+1

- e.g. block i at level k+1 must be placed in block (i mod 4) at
level k

- Conflict misses occur when the level k cache is large
enough, but multiple data objects all map to the same level k
block

- e.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every
time

 Capacity miss

- Occurs when the set of active cache blocks (working set) is
larger than the cache

17

More Caching Concepts

 Hit Rate: the fraction of memory accesses found in a

level of the memory hierarchy

 Hit Time: Time to access that level which consists of

 Time to access the block + Time to determine hit/miss

 Miss Rate: the fraction of memory accesses not found in

a level of the memory hierarchy  1 - (Hit Rate)

 Miss Penalty: Time to replace a block in that level with the

corresponding block from a lower level which consists of

 Time to access the block in the lower level

+ Time to transmit that block to the level that experienced the miss

+ Time to insert the block in that level

+ Time to pass the block to the requestor

Hit Time << Miss Penalty

18

Examples of Caching in the Hierarchy

Hardware 0.5 On-Chip TLB Address

translations

TLB

Web

browser

10,000,000 Local disk Web pages Browser cache

Web cache

Network buffer

cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

32-byte block

32-byte block

4-byte word

What Cached

Web proxy

server

1,000,000,000 Remote server

disks

OS 100 Main memory

Hardware On-Chip L1

Hardware 10 On/Off-Chip L2

AFS/NFS

client

10,000,000 Local disk

Hardware+

OS

100 Main memory

Compiler 0.5 CPU registers

Managed

By

Latency

(cycles)

Where Cached

19

Claim

 Being able to look at code and get
qualitative sense of its locality is key
skill for professional programmer

 Examples:

 BLAS (Basic Linear Algebra Subprograms)

 SPIRAL, Software/Hardware Generation for DSP
Algorithms

 FFTW, by Matteo Frigo and Steven G, Johnson

 Cache-Oblivious Algorithms, by Matteo Frigo, Charles E.
Leiserson, Harald Prokop, and Sridhar Ramachandran,
1999

 …
20

Memory Performance

 Average Memory Access Time (AMAT) is the average time

to access memory considering both hits and misses

AMAT = Time for a Hit + Miss Rate * Miss Penalty

 What is the AMAT for a processor with a 200 ps clock, a

miss penalty of 50 clock cycles, a miss rate of 0.02 misses

per instruction and a cache access time of 1 clock cycle?

1 + 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps

 Cache Miss Rate: number of cache misses/total number
of cache references (accesses)

• Miss rate + hit rate = 1.0 (100%)

 Miss Penalty: the difference between lower level access
time and cache access time

21

Measuring Cache Performance – Effect on CPI

 Assuming cache hit costs are included as part of the
normal CPU execution cycle, then

 CPU time = IC × CPI × CC

 = IC × (CPIideal + Average memory-stall cycles) × CC

CPIstall

A simple model for Memory-stall cycles:

Memory-stall cycles = #accesses/instruction × miss rate × miss penalty

This ignores extra costs of write misses.

22

Impacts of Cache Performance

 Relative cache miss penalty increases as processor
performance improves (faster clock rate and/or lower CPI)

 Memory speed unlikely to improve as fast as processor cycle
time. When calculating CPIstall, cache miss penalty is measured
in processor clock cycles needed to handle a miss

 Lower the CPIideal, more pronounced impact of stalls

 Processor with a CPIideal of 2, a 100 cycle miss penalty, 36%
load/store instr’s, and 2% instruction cache and 4% data cache
miss rates

 Memory-stall cycles = 2% × 100 + 36% × 4% × 100 = 3.44

 So CPIstalls = 2 + 3.44 = 5.44

 More than twice the CPIideal !

 What if the CPIideal is reduced to 1?

 What if the data cache miss rate went up by 1%?
23

Multiple Cache Levels

L1$

L2$

Main Memory

.

.

.

CPU Mem

Access

Miss

Hit

Miss

Hit

Path of Data Back to CPU

24

Multiple Cache Levels

 With advancing technology, have more room on die for bigger
L1 caches and for second level cache – normally a unified L2
cache (i.e., it holds both instructions and data,) and in some
cases even a unified L3 cache

 New AMAT Calculation:

 AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty,
L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

and so forth (final miss penalty is Main Memory access time)

25

New AMAT Example

 1 cycle L1 hit time, 2% L1 miss rate,

 5 cycle L2 hit time, 5% L2 miss rate.

 100 cycle main memory access time

 Without L2 cache:
 AMAT = 1 + .02*100 = 3

 With L2 cache:
 AMAT = 1 + .02*(5 + .05*100) = 1.2

26

Summary

Wanted: effect of a large, cheap, fast memory

Approach: Memory Hierarchy
 Successively lower levels contain “most used” data

from next higher level

 Exploits temporal & spatial locality of programs

 Do the common case fast, worry less about the
exceptions (RISC design principle)

Challenges to programmer:

Develop cache friendly (efficient) programs

27

Layout of C Arrays in Memory (hints for the exercises)

 C arrays allocated in row-major order

 Each row in contiguous memory locations

 Stepping through columns in one row:

 for (i = 0; i < N; i++)

sum += a[0][i];

 Accesses successive elements of size k bytes

 If block size (B) > k bytes, exploit spatial locality

- compulsory miss rate = k bytes / B

 Stepping through rows in one column:

 for (i = 0; i < n; i++)

sum += a[i][0];

 Accesses distant elements

 No spatial locality!

- Compulsory miss rate = 1 (i.e. 100%) 28

