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How is the Hierarchy Managed? 

 registers  cache memory 

 by compiler (programmer?) 

cache  main memory 

 by the cache controller hardware 

main memory  disks 

 by the operating system (virtual memory) 

 virtual to physical address mapping assisted by the 
hardware (TLB) 

 by the programmer (files) 
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Cache Design Questions 

Q1: How best to organize the memory blocks (lines) of the 
cache? 

Q2: To which block (line) of the cache does a given main 
memory address map? 

• Since the cache is a subset of memory, multiple 
memory addresses can map to the same cache 
location 

Q3: How do we know if a block of main memory currently 
has a copy in cache? 

Q4: How do we find this copy quickly? 
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General Organization of a Cache Memory 

• • • B–1 1 0 

• • • B–1 1 0 

valid 

valid 

tag 

tag 

set 0: 

B = 2b bytes 

per data block 

N lines  

per set  

(N-way) 

R = 2s sets 

t tag bits 

per line 

1 valid bit 

per line 

Cache size:  C = B x N x R data bytes 

• • • 

• • • B–1 1 0 

• • • B–1 1 0 

valid 

valid 

tag 

tag 

set 1: • • • 

• • • B–1 1 0 

• • • B–1 1 0 

valid 

valid 

tag 

tag 

set R-1: • • • 

• • • 

Cache is an array 

of sets 

 

Each set contains 

one or more lines 

 

Each line holds a 

block of data 

Set #   ≡  hash code 

(index) 
 

Tag     ≡  hash key 
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Addressing Caches (Memory-Cache Mapping) 

t bits s bits b bits 

0 m-1 

<tag> <set index> <block offset> 

Address A (m bits): 

• • • B–1 1 0 

• • • B–1 1 0 

v 

v 

tag 

tag 
set 0: • • • 

• • • B–1 1 0 

• • • B–1 1 0 

v 

v 

tag 

tag 
set 1: • • • 

• • • B–1 1 0 

• • • B–1 1 0 

v 

v 

tag 

tag 

set R-1: • • • 

• • • 

• The data word at address A is in the 

cache if the tag bits in one of the <valid> 

lines in set <set index> match <tag> 
 

• The word contents begin at offset  

<block offset> bytes from the beginning  

of the block 
 

Address mapping:  

      set# = (block address) modulo (R) 

block address =  

      <t bits> concatenate <s bits>  

 lw $t0,0($s1) #$t0=Mem($s1)  

 sw $t0,0($s1) #Mem($s1)=$t0 

 b = log2(B) 

 R = C/(B*N) 

 s = log2(R) 

 t  = m-s-b 

N-way 
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Types of Cache Organization 

 Direct-mapped 

 N = 1  

- one line per set  

- each memory block is mapped to exactly one line in the cache) 

  b = log2(B),  R = C/B,  s = log2(R),  t = m-s-b 

 Fully associative 

 R = 1 (allow a memory block to be mapped to any cache block) 

 b = log2(B),  N = C/B,  s = 0,  t = m-b 

 n-way set associative 

 N = n (2, 4, 8, or 16) 

 A memory block maps to a unique set (specified by the index field) 
and can be placed in any way of that set (so there are n choices) 

 b = log2(B),  R = C/(B*n),  s = log2(R),  t = m-s-b 
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Direct Mapped Cache Example (1 word data block) 

 Consider the sequence of memory address accesses 

                                            0,     1,       2 ,    3 ,     4,      3,       4 ,    15 

 Start with an 

empty cache –  

all blocks 

initially marked 

as not valid 

• 8 requests, 2 hits, 6 misses = 25% hit rate 
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0000, 0001, 0010, 0011, 0100, 0011, 0100, 1111 

  set 0 1 2 3 

4 3 4 15 

00    Mem(0) 00    Mem(0) 

00    Mem(1) 

00    Mem(0) 00    Mem(0) 

00    Mem(1) 

00    Mem(2) 

miss miss miss miss 

miss miss hit!!! hit!!! 

00    Mem(0) 

00    Mem(1) 

00    Mem(2) 

00    Mem(3) 

01    Mem(4) 

00    Mem(1) 

00    Mem(2) 

00    Mem(3) 

01    Mem(4) 

00    Mem(1) 

00    Mem(2) 

00    Mem(3) 

01    Mem(4) 

00    Mem(1) 

00    Mem(2) 

00    Mem(3) 

01 4 

11 15 

00    Mem(1) 

00    Mem(2) 

00    Mem(3) 

00 

01 

10 

11 

00 

01 

10 

11 

tag 

00 

01 

10 

11 

2-bits of tag, 2-bit of set address (index),  

(2-bit of byte offset to data word is ignored) 

tag 
data block  

(1 word) 



Why Use Middle Bits as Index? 

 High-Order Bit Indexing 

 Adjacent memory lines would map 
to same cache entry 

 Poor use of spatial locality 

 Middle-Order Bit Indexing 

 Consecutive memory lines map to 
different cache lines 

 Can hold C-byte region of address 
space in cache at one time 
 

 What type of locality? 

4-line Cache High-Order 

Bit Indexing 

Middle-Order 

Bit Indexing 
00x 

01x 

10x 

11x 

0000x 

0001x 

0010x 

0011x 

0100x 

0101x 

0110x 

0111x 

1000x 

1001x 

1010x 

1011x 

1100x 

1101x 

1110x 

1111x 

0000x 

0001x 

0010x 

0011x 

0100x 

0101x 

0110x 

0111x 

1000x 

1001x 

1010x 

1011x 

1100x 

1101x 

1110x 

1111x 
8 



One word (4 Byte) data blocks, cache size = 1K words (or 4KB) 

Direct Mapped Cache Example 

20 Tag 10 

Index 

Data  Set/Index Tag Valid 
0 

1 

2 

. 

. 

. 

1021 

1022 

1023 

31 30       . . .        13 12  11     . . .          2  1  0 

Byte 

offset 

What kind of locality are we taking advantage of? 

20 

Data 

32 

Hit 

9 

1024 = 210  



Taking Advantage of Spatial Locality  

 Let cache block hold more than one word (say, two) 

                                       0,     1,      2,     3,      4,      3,     4,     15 

0 1 2 

3 4 3 

4 15 

00   Mem(1)    Mem(0) 

miss 

00   Mem(1)    Mem(0) 

hit 

00   Mem(3)    Mem(2) 

00   Mem(1)    Mem(0) 

miss 

hit 

00   Mem(3)    Mem(2) 

00   Mem(1)    Mem(0) 

miss 

00   Mem(3)    Mem(2) 

00   Mem(1)    Mem(0) 
01 5 4 

hit 

00   Mem(3)    Mem(2) 

01   Mem(5)    Mem(4) 

hit 

00   Mem(3)    Mem(2) 

01   Mem(5)    Mem(4) 

00   Mem(3)    Mem(2) 

01   Mem(5)    Mem(4) 

miss 

11 

15 14 

Start with an 

empty cache - 

all blocks 

initially marked 

as not valid 

• 8 requests, 4 hits, 4 misses = 50% hit rate! 
10 

0000, 0001, 0010, 0011, 0100, 0011, 0100, 1111 

2-bits of tag, 1-bit of set address (index),  

1-bit of word-in-block select 

0 

1 

tag 

data block  

(2 words) 

0 

1 

0 
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Multiword Block Direct Mapped Cache 

Four data words/block, cache size = 1K words (256 blocks, 4KB total data) 
  

8 
Index 

Data Index Tag Valid 
0 

1 

2 

. 

. 

. 

253 

254 

255 

31 30   . . .       13 12  11    . . .    4  3  2  1  0 

Byte 

offset 

20 

20 Tag 

Hit Data 

32 

Block offset 

What kind of locality are we taking advantage of? 11 



Miss Rate vs Block Size vs Cache Size 

0 

5 

10 

16 32 64 128 256 

M
is

s
 r

a
te

 (
%

) 

Block size (bytes) 

8 KB 

16 KB 

64 KB 

• Miss rate goes up if the block size becomes a significant fraction of 

the cache size because the number of blocks that can be held in 

the same size cache is smaller (increasing capacity misses) 

 
12 



Exp: 4 Word Direct-Mapped $ for a Worst-Case Reference String 

 Consider the main memory word reference string 

                                            0,      4,    0,     4,    0,    4,     0,    4 Start with an empty cache - all 

blocks initially marked as not valid 

 Ping pong effect due to conflict misses –  

two memory locations that map into the same cache block 

0 4 0 4 

0 4 0 4 

miss miss miss miss 

miss miss miss miss 

00    Mem(0) 00    Mem(0) 
01 4 

01    Mem(4) 
0 00 

00    Mem(0) 
01 

4 

00    Mem(0) 

01 4 
00    Mem(0) 

01 
4 

01    Mem(4) 
0 00 

01    Mem(4) 
0 00 

 8 requests, 8 misses 

0000, 0100 

00 

01 

10 

11 

00 

01 

10 

11 
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Exp: 4-Word 2-Way SA $ for the Same Reference String 

Start with an empty cache - all 

blocks initially marked as not valid 

0 4 0 4 miss miss hit hit 

000    Mem(0) 000    Mem(0) 

010    Mem(4) 010    Mem(4) 

000    Mem(0) 000    Mem(0) 

010    Mem(4) 

 Solves the ping pong effect in a direct mapped cache due to 

conflict misses since now two memory locations that map into 

the same cache set can co-exist! 

 8 requests, 2 misses 

 Consider the main memory word reference string 

                                            0,      4,    0,     4,    0,    4,     0,    4 

0000, 0100 

0 

1 
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Four-Way Set Associative Cache 

 28 = 256 sets each with four ways (each with one block) 

31 30       . . .        13 12  11     . . .        2  1  0 Byte offset 

Data Tag V 
0 

1 

2 

. 

. 

. 

 253 

 254 

 255 

Data Tag V 
0 

1 

2 

. 

. 

. 

 253 

 254 

 255 

Data Tag V 
0 

1 

2 

. 

. 

. 

 253 

 254 

 255 

  Index Data Tag V 
0 

1 

2 

. 

. 

. 

 253 

 254 

 255 

8 

Index 

22 Tag 

Hit Data 

32 

4x1 select 

Way 0 Way 1 Way 2 Way 3 
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Range of Set Associative Caches 

 For a fixed size cache, each increase by a factor of two in 
associativity doubles the number of blocks per set (i.e., the 
number of ways) and halves the number of sets – 
decreases the size of the index by 1 bit and increases the 
size of the tag by 1 bit 

Block offset Byte offset Index Tag 

Decreasing associativity 

Fully associative 

(only one set) 

Tag is all the bits except 

block and byte offset 

Direct mapped 

(only one way) 

Smaller tags, only a 

single comparator 

Increasing associativity 

Selects the set Used for tag compare Selects the word in the block 
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Benefits of Set Associative Caches 

 The choice of direct mapped or set associative depends 
on the cost of a miss versus the cost of implementation 

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

Data from Hennessy & 

Patterson, Computer 

Architecture, 2003 

 Largest gains are in going from direct mapped to 2-way 

(20%+ reduction in miss rate) 



Further Reducing Cache Miss Rates 

Use multiple levels of caches 
 

 With advancing technology have more than enough room on the 

die for bigger L1 caches or for a second level of caches – normally 

a unified L2 cache (i.e., it holds both instructions and data) and in 

some cases even a unified L3 cache 
 

 New AMAT Calculation: 

      AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty, 

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty, 

and so forth (final miss penalty is Main Memory access time) 

 Example: 1 cycle L1 hit time, 2% L1 miss rate,  5 cycle L2 hit time, 

5% L2 miss rate,100 cycle main memory access time 

 Without L2 cache: 
  AMAT = 1 + .02*100 = 3 

 With L2 cache: 
  AMAT = 1 + .02*(5 + .05*100) = 1.2 
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Intel Pentium Cache Hierarchy 

Processor Chip 

L1 Data 

1 cycle latency 

16 KB 

4-way assoc 

Write-through 

32B lines 

L1 Instruction 

16 KB, 4-way 

32B lines 

Regs. L2 Unified 

128KB–2 MB 

4-way assoc 

Write-back 

Write allocate 

32B lines 

Main 

Memory 

Up to 4GB 
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Multilevel Cache Design Considerations 

 Design considerations for L1 and L2 caches are very different 

 Primary cache should focus on minimizing hit time in support of 
a shorter clock cycle 

- Smaller with smaller block sizes 

 Secondary cache(s) should focus on reducing miss rate to 
reduce the penalty of long main memory access times 

- Larger with larger block sizes 

- Higher levels of associativity 

 The miss penalty of the L1 cache is significantly reduced by 
the presence of an L2 cache – so it can be smaller (i.e., 
faster) but have a higher miss rate 

 For the L2 cache, hit time is less important than miss rate 

 The L2$ hit time determines L1$’s miss penalty 

 L2$ local miss rate >> than the global miss rate 
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What parameters do you not know by far?  

Intel Nehalem AMD Barcelona 

L1 cache 

organization & size 

Split I$ and D$; 32KB for 

each per core; 64B blocks 

Split I$ and D$; 64KB for each 

per core; 64B blocks 

L1 associativity 4-way (I), 8-way (D) set 

assoc.; ~LRU replacement 

2-way set assoc.; LRU 

replacement 

L1 write policy write-back, write-allocate write-back, write-allocate 

L2 cache 

organization & size 

Unified; 256MB (0.25MB) per 

core; 64B blocks 

Unified; 512KB (0.5MB) per 

core; 64B blocks 

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU 

L2 write policy write-back write-back 

L2 write policy write-back, write-allocate write-back, write-allocate 

L3 cache 

organization & size 

Unified; 8192KB (8MB) 

shared by cores; 64B blocks 

Unified; 2048KB (2MB) shared 

by cores; 64B blocks 

L3 associativity 16-way set assoc. 32-way set assoc.; evict block 

shared by fewest cores 

L3 write policy write-back, write-allocate write-back; write-allocate 21 



 Read hits (I$ and D$) 

 this is what we want! 

 

 Write hits (D$ only) 

 require the cache and memory to be consistent 

- always write the data into both the cache block and the next level in the 

memory hierarchy (write-through) 

- writes run at the speed of the next level in the memory hierarchy – so 

slow! – or can use a write buffer and stall only if the write buffer is full 

 allow cache and memory to be inconsistent 

- write the data only into the cache block (write-back the cache block to 

the next level in the memory hierarchy when that cache block is 

“evicted”) 

- need a dirty bit for each data cache block to tell if it needs to be written 

back to memory when it is evicted – can use a write buffer to help 

“buffer” write-backs of dirty blocks 

Handling Cache Hits 

22 



Sources of Cache Misses 

 Compulsory (cold start or process migration, first 
reference): 

 First access to a block, “cold” fact of life, not a whole lot you 
can do about it.  If you are going to run “millions” of instruction, 
compulsory misses are insignificant 

 Solution: increase block size (increases miss penalty; very 
large blocks could increase miss rate) 

 Capacity: 

 Cache cannot contain all blocks accessed by the program 

 Solution: increase cache size (may increase access time) 

 Conflict (collision): 

 Multiple memory locations mapped to the same cache location 

 Solution 1: increase cache size 

 Solution 2: increase associativity (may increase access time) 
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Handling Cache Misses (Single Word Blocks) 

 Read misses (I$ and D$) 

 stall the pipeline, fetch the block from the next level in the memory 

hierarchy, install it in the cache and send the requested word to 

the processor, then let the pipeline resume 

 Write misses (D$ only) 

1. stall the pipeline, fetch the block from next level in the memory 

hierarchy, install it in the cache (which may involve having to evict 

a dirty block if using a write-back cache), write the word from the 

processor to the cache, then let the pipeline resume 

or 

2. Write allocate – just write the word into the cache updating both 

the tag and data, no need to check for cache hit, no need to stall 

or 

3. No-write allocate – skip the cache write (but must invalidate that 

cache block since it will now hold stale data) and just write the 

word to the write buffer (and eventually to the next memory level), 

no need to stall if the write buffer isn’t full 
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Handling Cache Misses (Multiword Blocks) 

 Read misses (I$ and D$) 

 Processed the same as for single word blocks – a miss returns 

the entire block from memory 

 Miss penalty grows as block size grows. To reduce miss penalty: 

- Early restart – processor resumes execution as soon as the 

requested word of the block is returned 

- Requested word first – requested word is transferred from the 

memory to the cache (and processor) first 

 Non-blocking cache – allows the processor to continue to 

access the cache while the cache is handling an earlier miss 
 

 Write misses (D$) 

 If using write allocate must first fetch the block from memory and 

then write the word to the block (or could end up with a “garbled” 

block in the cache (e.g., for 4 word blocks, a new tag, one word of 

data from the new block, and three words of data from the old 

block) 
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Extra Costs of Set Associative Caches 

 When a miss occurs, which way’s block do we pick for 

replacement? 

 Least Recently Used (LRU): the block replaced is the one that    

has been unused for the longest time 

- Must have hardware to keep track of when each way’s block was   

used relative to the other blocks in the set 

- For 2-way set associative, takes one bit per set → set the bit when a 

block is referenced (and reset the other way’s bit) 
 

 N-way set associative cache costs 

 N comparators (delay and area) 

 MUX delay (set selection) before data is available 

 Data available after set selection (and Hit/Miss decision).   In a 

direct mapped cache, the cache block is available before the 

Hit/Miss decision 

- So its not possible to just assume a hit and continue and recover later 

if it was a miss 
26 



Summary:  Improving Cache Performance 

0. Reduce the time to hit in the cache 

 smaller cache 

 direct mapped cache 

 smaller blocks 

 for writes  

- no write allocate – no “hit” on cache, just write to write buffer 

- write allocate – to avoid two cycles (first check for hit, then write) 

pipeline writes via a delayed write buffer to cache 

 

1. Reduce the miss rate 

 bigger cache 

 more flexible placement (increase associativity) 

 larger blocks (16 to 64 bytes typical) 

 victim cache – small buffer holding most recently discarded blocks  
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Summary:  Improving Cache Performance 

2. Reduce the miss penalty 

 smaller blocks 

 use a write buffer to hold dirty blocks being replaced so don’t 

have to wait for the write to complete before reading  

 check write buffer (and/or victim cache) on read miss – may get 

lucky  

 for large blocks fetch critical word first 

 use multiple cache levels – L2 cache not tied to CPU clock rate 

 faster backing store/improved memory bandwidth 

- wider buses 

- memory interleaving, DDR SDRAMs 
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Summary: The Cache Design Space 

 Several interacting dimensions 

 cache size 

 block size 

 associativity 

 replacement policy 

 write-through vs write-back 

 write allocation 

 The optimal choice is a compromise 

 depends on access characteristics 

- workload 

- use (I-cache, D-cache, TLB) 

 depends on technology / cost 

 Simplicity often wins 

Associativity 

Cache Size 

Block Size 

Bad 

Good 

Less More 

Factor A Factor B 
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Takeaway 

 The Principle of Locality: 

 Program likely to access a relatively small portion of the address 
space at any instant of time 

- Temporal Locality: Locality in Time 

- Spatial Locality: Locality in Space 

 Three major categories of cache misses: 

 Compulsory misses: sad facts of life.  Example: cold start misses 

 Conflict misses:  increase cache size and/or associativity 
Nightmare Scenario: ping pong effect! 

 Capacity misses: increase cache size 

 Cache design space 

 total size, block size, associativity (replacement policy) 

 write-hit policy (write-through, write-back) 

 write-miss policy (write allocate, write buffers) 
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Self-review Questions for the Memory Hierarchy 

Q1: Where can a entry be placed in the upper level? 
(Entry placement) 
 

Q2: How is a entry found if it is in the upper level? 
(Entry identification) 
 

Q3: Which entry should be replaced on a miss?  
(Entry replacement) 
 

Q4: What happens on a write?  
(Write strategy) 
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Q1&Q2: Where can an entry be placed/found? 

# of sets Entries per set 

Direct mapped # of entries 1 

Set associative (# of entries)/ associativity Associativity (typically 

2 to 16) 

Fully associative 1 # of entries 

Location method # of comparisons 

Direct mapped Index 1 

Set associative Index the set; compare 

set’s tags 

Degree of 

associativity 

Fully associative Compare all entries’ tags 

Separate lookup (page) 

table 

# of entries 

0 



Q3: Which entry should be replaced on a miss? 

 Easy for direct mapped – only one choice 

 Set associative or fully associative 

 Random 

 LRU (Least Recently Used) 

 

 For a 2-way set associative, random replacement has 
a miss rate about 1.1 times higher than LRU 

 LRU is too costly to implement for high levels of 
associativity (> 4-way) since tracking the usage 
information is costly 
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Q4: What happens on a write? 

 Write-through – The information is written to the entry in 

the current memory level and to the entry in the next level 

of the memory hierarchy 

 Always combined with a write buffer so write waits to next level 

memory can be eliminated (as long as the write buffer doesn’t fill) 

 Write-back – The information is written only to the entry in 

the current memory level. The modified entry is written to 

next level of memory only when it is replaced. 

 Need a dirty bit to keep track of whether the entry is clean or dirty 

 Virtual memory systems always use write-back of dirty pages to 

disk 

 Pros and cons of each? 

 Write-through: read misses don’t result in writes (so are simpler 

and cheaper), easier to implement 

 Write-back: writes run at the speed of the cache; repeated writes 

require only one write to lower level 34 


