
CS3350B
 Computer Architecture

Winter 2015

Lecture 3.2: Exploiting Memory Hierarchy:

How?

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2014]

0

http://www.cse.psu.edu/~

How is the Hierarchy Managed?

 registers cache memory

 by compiler (programmer?)

cache main memory

 by the cache controller hardware

main memory disks

 by the operating system (virtual memory)

 virtual to physical address mapping assisted by the
hardware (TLB)

 by the programmer (files)

1

Cache Design Questions

Q1: How best to organize the memory blocks (lines) of the
cache?

Q2: To which block (line) of the cache does a given main
memory address map?

• Since the cache is a subset of memory, multiple
memory addresses can map to the same cache
location

Q3: How do we know if a block of main memory currently
has a copy in cache?

Q4: How do we find this copy quickly?

2

General Organization of a Cache Memory

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

tag

set 0:

B = 2b bytes

per data block

N lines

per set

(N-way)

R = 2s sets

t tag bits

per line

1 valid bit

per line

Cache size: C = B x N x R data bytes

• • •

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

tag

set 1: • • •

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

tag

set R-1: • • •

• • •

Cache is an array

of sets

Each set contains

one or more lines

Each line holds a

block of data

Set # ≡ hash code

(index)

Tag ≡ hash key

3

Addressing Caches (Memory-Cache Mapping)

t bits s bits b bits

0 m-1

<tag> <set index> <block offset>

Address A (m bits):

• • • B–1 1 0

• • • B–1 1 0

v

v

tag

tag
set 0: • • •

• • • B–1 1 0

• • • B–1 1 0

v

v

tag

tag
set 1: • • •

• • • B–1 1 0

• • • B–1 1 0

v

v

tag

tag

set R-1: • • •

• • •

• The data word at address A is in the

cache if the tag bits in one of the <valid>

lines in set <set index> match <tag>

• The word contents begin at offset

<block offset> bytes from the beginning

of the block

Address mapping:

 set# = (block address) modulo (R)

block address =

 <t bits> concatenate <s bits>

 lw $t0,0($s1) #$t0=Mem($s1)

 sw $t0,0($s1) #Mem($s1)=$t0

 b = log2(B)

 R = C/(B*N)

 s = log2(R)

 t = m-s-b

N-way

4

Types of Cache Organization

 Direct-mapped

 N = 1

- one line per set

- each memory block is mapped to exactly one line in the cache)

 b = log2(B), R = C/B, s = log2(R), t = m-s-b

 Fully associative

 R = 1 (allow a memory block to be mapped to any cache block)

 b = log2(B), N = C/B, s = 0, t = m-b

 n-way set associative

 N = n (2, 4, 8, or 16)

 A memory block maps to a unique set (specified by the index field)
and can be placed in any way of that set (so there are n choices)

 b = log2(B), R = C/(B*n), s = log2(R), t = m-s-b

5

Direct Mapped Cache Example (1 word data block)

 Consider the sequence of memory address accesses

 0, 1, 2 , 3 , 4, 3, 4 , 15

 Start with an

empty cache –

all blocks

initially marked

as not valid

• 8 requests, 2 hits, 6 misses = 25% hit rate
7

0000, 0001, 0010, 0011, 0100, 0011, 0100, 1111

 set 0 1 2 3

4 3 4 15

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(2)

miss miss miss miss

miss miss hit!!! hit!!!

00 Mem(0)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 4

11 15

00 Mem(1)

00 Mem(2)

00 Mem(3)

00

01

10

11

00

01

10

11

tag

00

01

10

11

2-bits of tag, 2-bit of set address (index),

(2-bit of byte offset to data word is ignored)

tag
data block

(1 word)

Why Use Middle Bits as Index?

 High-Order Bit Indexing

 Adjacent memory lines would map
to same cache entry

 Poor use of spatial locality

 Middle-Order Bit Indexing

 Consecutive memory lines map to
different cache lines

 Can hold C-byte region of address
space in cache at one time

 What type of locality?

4-line Cache High-Order

Bit Indexing

Middle-Order

Bit Indexing
00x

01x

10x

11x

0000x

0001x

0010x

0011x

0100x

0101x

0110x

0111x

1000x

1001x

1010x

1011x

1100x

1101x

1110x

1111x

0000x

0001x

0010x

0011x

0100x

0101x

0110x

0111x

1000x

1001x

1010x

1011x

1100x

1101x

1110x

1111x
8

One word (4 Byte) data blocks, cache size = 1K words (or 4KB)

Direct Mapped Cache Example

20 Tag 10

Index

Data Set/Index Tag Valid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0

Byte

offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

9

1024 = 210

Taking Advantage of Spatial Locality

 Let cache block hold more than one word (say, two)

 0, 1, 2, 3, 4, 3, 4, 15

0 1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)
01 5 4

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

miss

11

15 14

Start with an

empty cache -

all blocks

initially marked

as not valid

• 8 requests, 4 hits, 4 misses = 50% hit rate!
10

0000, 0001, 0010, 0011, 0100, 0011, 0100, 1111

2-bits of tag, 1-bit of set address (index),

1-bit of word-in-block select

0

1

tag

data block

(2 words)

0

1

0

1

Multiword Block Direct Mapped Cache

Four data words/block, cache size = 1K words (256 blocks, 4KB total data)

8
Index

Data Index Tag Valid
0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0

Byte

offset

20

20 Tag

Hit Data

32

Block offset

What kind of locality are we taking advantage of? 11

Miss Rate vs Block Size vs Cache Size

0

5

10

16 32 64 128 256

M
is

s
 r

a
te

 (
%

)

Block size (bytes)

8 KB

16 KB

64 KB

• Miss rate goes up if the block size becomes a significant fraction of

the cache size because the number of blocks that can be held in

the same size cache is smaller (increasing capacity misses)

12

Exp: 4 Word Direct-Mapped $ for a Worst-Case Reference String

 Consider the main memory word reference string

 0, 4, 0, 4, 0, 4, 0, 4 Start with an empty cache - all

blocks initially marked as not valid

 Ping pong effect due to conflict misses –

two memory locations that map into the same cache block

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
0 00

00 Mem(0)
01

4

00 Mem(0)

01 4
00 Mem(0)

01
4

01 Mem(4)
0 00

01 Mem(4)
0 00

 8 requests, 8 misses

0000, 0100

00

01

10

11

00

01

10

11

13

Exp: 4-Word 2-Way SA $ for the Same Reference String

Start with an empty cache - all

blocks initially marked as not valid

0 4 0 4 miss miss hit hit

000 Mem(0) 000 Mem(0)

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

 Solves the ping pong effect in a direct mapped cache due to

conflict misses since now two memory locations that map into

the same cache set can co-exist!

 8 requests, 2 misses

 Consider the main memory word reference string

 0, 4, 0, 4, 0, 4, 0, 4

0000, 0100

0

1

14

Four-Way Set Associative Cache

 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

Data Tag V
0

1

2

.

.

.

 253

 254

 255

Data Tag V
0

1

2

.

.

.

 253

 254

 255

Data Tag V
0

1

2

.

.

.

 253

 254

 255

 Index Data Tag V
0

1

2

.

.

.

 253

 254

 255

8

Index

22 Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

15

Range of Set Associative Caches

 For a fixed size cache, each increase by a factor of two in
associativity doubles the number of blocks per set (i.e., the
number of ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases the
size of the tag by 1 bit

Block offset Byte offset Index Tag

Decreasing associativity

Fully associative

(only one set)

Tag is all the bits except

block and byte offset

Direct mapped

(only one way)

Smaller tags, only a

single comparator

Increasing associativity

Selects the set Used for tag compare Selects the word in the block

16

Benefits of Set Associative Caches

 The choice of direct mapped or set associative depends
on the cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

Data from Hennessy &

Patterson, Computer

Architecture, 2003

 Largest gains are in going from direct mapped to 2-way

(20%+ reduction in miss rate)

Further Reducing Cache Miss Rates

Use multiple levels of caches

 With advancing technology have more than enough room on the

die for bigger L1 caches or for a second level of caches – normally

a unified L2 cache (i.e., it holds both instructions and data) and in

some cases even a unified L3 cache

 New AMAT Calculation:

 AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty,

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty,

and so forth (final miss penalty is Main Memory access time)

 Example: 1 cycle L1 hit time, 2% L1 miss rate, 5 cycle L2 hit time,

5% L2 miss rate,100 cycle main memory access time

 Without L2 cache:
 AMAT = 1 + .02*100 = 3

 With L2 cache:
 AMAT = 1 + .02*(5 + .05*100) = 1.2

18

Intel Pentium Cache Hierarchy

Processor Chip

L1 Data

1 cycle latency

16 KB

4-way assoc

Write-through

32B lines

L1 Instruction

16 KB, 4-way

32B lines

Regs. L2 Unified

128KB–2 MB

4-way assoc

Write-back

Write allocate

32B lines

Main

Memory

Up to 4GB

19

Multilevel Cache Design Considerations

 Design considerations for L1 and L2 caches are very different

 Primary cache should focus on minimizing hit time in support of
a shorter clock cycle

- Smaller with smaller block sizes

 Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times

- Larger with larger block sizes

- Higher levels of associativity

 The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache – so it can be smaller (i.e.,
faster) but have a higher miss rate

 For the L2 cache, hit time is less important than miss rate

 The L2$ hit time determines L1$’s miss penalty

 L2$ local miss rate >> than the global miss rate

20

What parameters do you not know by far?

Intel Nehalem AMD Barcelona

L1 cache

organization & size

Split I$ and D$; 32KB for

each per core; 64B blocks

Split I$ and D$; 64KB for each

per core; 64B blocks

L1 associativity 4-way (I), 8-way (D) set

assoc.; ~LRU replacement

2-way set assoc.; LRU

replacement

L1 write policy write-back, write-allocate write-back, write-allocate

L2 cache

organization & size

Unified; 256MB (0.25MB) per

core; 64B blocks

Unified; 512KB (0.5MB) per

core; 64B blocks

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU

L2 write policy write-back write-back

L2 write policy write-back, write-allocate write-back, write-allocate

L3 cache

organization & size

Unified; 8192KB (8MB)

shared by cores; 64B blocks

Unified; 2048KB (2MB) shared

by cores; 64B blocks

L3 associativity 16-way set assoc. 32-way set assoc.; evict block

shared by fewest cores

L3 write policy write-back, write-allocate write-back; write-allocate 21

 Read hits (I$ and D$)

 this is what we want!

 Write hits (D$ only)

 require the cache and memory to be consistent

- always write the data into both the cache block and the next level in the

memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy – so

slow! – or can use a write buffer and stall only if the write buffer is full

 allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache block to

the next level in the memory hierarchy when that cache block is

“evicted”)

- need a dirty bit for each data cache block to tell if it needs to be written

back to memory when it is evicted – can use a write buffer to help

“buffer” write-backs of dirty blocks

Handling Cache Hits

22

Sources of Cache Misses

 Compulsory (cold start or process migration, first
reference):

 First access to a block, “cold” fact of life, not a whole lot you
can do about it. If you are going to run “millions” of instruction,
compulsory misses are insignificant

 Solution: increase block size (increases miss penalty; very
large blocks could increase miss rate)

 Capacity:

 Cache cannot contain all blocks accessed by the program

 Solution: increase cache size (may increase access time)

 Conflict (collision):

 Multiple memory locations mapped to the same cache location

 Solution 1: increase cache size

 Solution 2: increase associativity (may increase access time)

23

Handling Cache Misses (Single Word Blocks)

 Read misses (I$ and D$)

 stall the pipeline, fetch the block from the next level in the memory

hierarchy, install it in the cache and send the requested word to

the processor, then let the pipeline resume

 Write misses (D$ only)

1. stall the pipeline, fetch the block from next level in the memory

hierarchy, install it in the cache (which may involve having to evict

a dirty block if using a write-back cache), write the word from the

processor to the cache, then let the pipeline resume

or

2. Write allocate – just write the word into the cache updating both

the tag and data, no need to check for cache hit, no need to stall

or

3. No-write allocate – skip the cache write (but must invalidate that

cache block since it will now hold stale data) and just write the

word to the write buffer (and eventually to the next memory level),

no need to stall if the write buffer isn’t full
24

Handling Cache Misses (Multiword Blocks)

 Read misses (I$ and D$)

 Processed the same as for single word blocks – a miss returns

the entire block from memory

 Miss penalty grows as block size grows. To reduce miss penalty:

- Early restart – processor resumes execution as soon as the

requested word of the block is returned

- Requested word first – requested word is transferred from the

memory to the cache (and processor) first

 Non-blocking cache – allows the processor to continue to

access the cache while the cache is handling an earlier miss

 Write misses (D$)

 If using write allocate must first fetch the block from memory and

then write the word to the block (or could end up with a “garbled”

block in the cache (e.g., for 4 word blocks, a new tag, one word of

data from the new block, and three words of data from the old

block)

25

Extra Costs of Set Associative Caches

 When a miss occurs, which way’s block do we pick for

replacement?

 Least Recently Used (LRU): the block replaced is the one that

has been unused for the longest time

- Must have hardware to keep track of when each way’s block was

used relative to the other blocks in the set

- For 2-way set associative, takes one bit per set → set the bit when a

block is referenced (and reset the other way’s bit)

 N-way set associative cache costs

 N comparators (delay and area)

 MUX delay (set selection) before data is available

 Data available after set selection (and Hit/Miss decision). In a

direct mapped cache, the cache block is available before the

Hit/Miss decision

- So its not possible to just assume a hit and continue and recover later

if it was a miss
26

Summary: Improving Cache Performance

0. Reduce the time to hit in the cache

 smaller cache

 direct mapped cache

 smaller blocks

 for writes

- no write allocate – no “hit” on cache, just write to write buffer

- write allocate – to avoid two cycles (first check for hit, then write)

pipeline writes via a delayed write buffer to cache

1. Reduce the miss rate

 bigger cache

 more flexible placement (increase associativity)

 larger blocks (16 to 64 bytes typical)

 victim cache – small buffer holding most recently discarded blocks

27

Summary: Improving Cache Performance

2. Reduce the miss penalty

 smaller blocks

 use a write buffer to hold dirty blocks being replaced so don’t

have to wait for the write to complete before reading

 check write buffer (and/or victim cache) on read miss – may get

lucky

 for large blocks fetch critical word first

 use multiple cache levels – L2 cache not tied to CPU clock rate

 faster backing store/improved memory bandwidth

- wider buses

- memory interleaving, DDR SDRAMs

28

Summary: The Cache Design Space

 Several interacting dimensions

 cache size

 block size

 associativity

 replacement policy

 write-through vs write-back

 write allocation

 The optimal choice is a compromise

 depends on access characteristics

- workload

- use (I-cache, D-cache, TLB)

 depends on technology / cost

 Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

29

Takeaway

 The Principle of Locality:

 Program likely to access a relatively small portion of the address
space at any instant of time

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

 Three major categories of cache misses:

 Compulsory misses: sad facts of life. Example: cold start misses

 Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!

 Capacity misses: increase cache size

 Cache design space

 total size, block size, associativity (replacement policy)

 write-hit policy (write-through, write-back)

 write-miss policy (write allocate, write buffers)

30

Self-review Questions for the Memory Hierarchy

Q1: Where can a entry be placed in the upper level?
(Entry placement)

Q2: How is a entry found if it is in the upper level?
(Entry identification)

Q3: Which entry should be replaced on a miss?
(Entry replacement)

Q4: What happens on a write?
(Write strategy)

31

Q1&Q2: Where can an entry be placed/found?

of sets Entries per set

Direct mapped # of entries 1

Set associative (# of entries)/ associativity Associativity (typically

2 to 16)

Fully associative 1 # of entries

Location method # of comparisons

Direct mapped Index 1

Set associative Index the set; compare

set’s tags

Degree of

associativity

Fully associative Compare all entries’ tags

Separate lookup (page)

table

of entries

0

Q3: Which entry should be replaced on a miss?

 Easy for direct mapped – only one choice

 Set associative or fully associative

 Random

 LRU (Least Recently Used)

 For a 2-way set associative, random replacement has
a miss rate about 1.1 times higher than LRU

 LRU is too costly to implement for high levels of
associativity (> 4-way) since tracking the usage
information is costly

33

Q4: What happens on a write?

 Write-through – The information is written to the entry in

the current memory level and to the entry in the next level

of the memory hierarchy

 Always combined with a write buffer so write waits to next level

memory can be eliminated (as long as the write buffer doesn’t fill)

 Write-back – The information is written only to the entry in

the current memory level. The modified entry is written to

next level of memory only when it is replaced.

 Need a dirty bit to keep track of whether the entry is clean or dirty

 Virtual memory systems always use write-back of dirty pages to

disk

 Pros and cons of each?

 Write-through: read misses don’t result in writes (so are simpler

and cheaper), easier to implement

 Write-back: writes run at the speed of the cache; repeated writes

require only one write to lower level 34

