CS3350B

Computer Architecture
Winter 2015

Lecture 4.1: MIPS ISA: Introduction

Marc Moreno Maza

[Adapted from lectures on
Computer Organization and Design,
Patterson & Hennessy, 5% edition, 2013]

Abstraction of Machine Structures

Levels of representation

Application (ex: browser)

Operating
‘Compiler System
Software Assembler | (Mac OSX)
Hardware Processor |Memory [I/O system

Datapath & Control

Digital Design

Circuit Design

Transistors

Instruction Set
Architecture

Instructions:
Language of the Computer

Instruction Set

The repertoire of instructions of a computer

Different computers have different instruction
sets

But with many aspects in common

Early computers had very simple instruction
sets

Simplified implementation

Many modern computers also have simple
iInstruction sets

The MIPS Instruction Set

Used as the example throughout the book
Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market
Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

spim Assembler and Simulator

spim is a simulator that runs MIPS32
assembly language programs

It provides a simple assembler, debugger and a
simple set of operating system services

Interfaces: Spim, XSpim, PCSpim, QtSpim (new
Ul, cross-platform)

See installation and user guide at

Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

add a, b, ¢ # agets b + C
All arithmetic operations have this form
Design Principle 1. Simplicity favors
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Arithmetic Example

C code:
F=(@@+h) -+]);
Compiled MIPS code:

add tO, g, h # temp tO g + h
add t1, 1, j} # temp tl 1 +
sub ¥, tO, t1 # f = t0 - t1

Register Operands

Arithmetic instructions use register
operands
MIPS has a 32 x 32-bit register file

Use for frequently accessed data
Numbered 0O to 31

32-bit data called a “word”
Assembler names

$t0, $t1, ..., $t9 for temporary values

$s0, $s1, ..., $s7 for saved variables
Design Principle 2: Smaller is faster

c.f. main memory: millions of locations

Register Operand Example

C code:

F=@@+h) -+]J);
f,...,jin $s0, ..., $s4

Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $tl

10

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data

To apply arithmetic operations
Load values from memory into registers
Store result from register to memory

Memory is byte addressed
Each address identifies an 8-bit byte

Words are aligned in memory
Address must be a multiple of 4
MIPS is Big Endian

Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Memory Operand Example 1

C code:
g = h + A[8];
gin $s1, hin $s2, base address of A in $s3

Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Iw $t0, 32($s3) # load word
add $s1, $52,\$t0

offset base register

12

Memory Operand Example 2

C code:
A[12] = h + A[8]:
hin $s2, base address of A in $s3

Compiled MIPS code:

Index 8 requires offset of 32

Iw $t0, 32($s3) # load word
add $t0, $s2, $t0O
sw $t0, 48($s3) # store word

13

Registers vs. Memory

Registers are faster to access than memory

Operating on memory data requires loads
and stores

More instructions to be executed

Compiler must use registers for variables as
much as possible

Only spill to memory for less frequently
used variables

Register optimization is important!

Immediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4

No subtract immediate instruction

Just use a negative constant
addr $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common
Immediate operand avoids a load instruction

15

The Constant Zero

MIPS register 0 ($zero) is the constant O
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $s1, $zero

16

Overview: MIPS R3000 ISA

Instruction Categories

Registers
Computational
Load/Store RO - R31
Jump and Branch
Floating Point
coprocessor
Memory Management ::?
Special
LO
3 Basic Instruction Formats: all 32 bits wide
OP rs rt rd sha funct R-format
OP rs rt immediate |-format
OoP Jump target J-format

17

MIPS Register Convention

Name Register Usage Preserve

Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - Sv1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 | saved values yes
$t8 - $t9 24-25 | temporaries no
$k 26-27 | Interrupt/trap handler yes
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

MIPS ISA Selected Instruction Set

Category Instr OP/funct Example Meaning
Arithmetic | add R 0/32 add $s1, $s2, $s3 | $s1 = $s2 + $s3
subtract R 0/34 sub $s1, $s2, $s3 | $s1 = $s2 - $s3
add immediate I 8 addi $s1, $s2, 6 $s1=%s2+6
or immediate I 13 ori $s1, $s2, 6 $s1=%s2v 6
Data load word I 35 lw $s1, 24($s2) $s1 = Memory($s2+24)
Transfer ['store word I 43 sw $s1, 24($s2) Memory($s2+24) = $s1
load byte I 32 b $s1, 25($s2) $s1 = Memory($s2+25)
store byte I 40 sb $s1, 25($s2) Memory($s2+25) = $s1
load upper imm | | 15 lui $s1,6 $s1 =6 * 216
Cond. br on equal I 4 beq $s1, $s2, L if ($s1==%s2) gotoL
Branch br on not equal | | 5 bne $s1, $s2, L if ($s1!=%s2) gotoL
setonlessthan | R 0/42 slt $s1, $s2, $s3 | if ($52<$s3) §s11=2) else
s1=
set on less than | | 10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else
immediate $s1=0
Uncond. jump J 2 j 250 go to 1000
Jump jump register R 0/8 jr $t1 go to $t1
jump and link J 3 jal 250 go to 1000; $ra=PC+4

Unsigned Binary Integers

Given an n-bit number
X=X 2" +x 2"+ +Xx,2' +x,2°

Range: 0 to +2" - 1

Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1x23 4+ 0x22 +1x21 +1x20
=0+...+8+0+2+1=11,

Using 32 bits
0 to +4,294,967,295

2s-Complement Signed Integers

Given an n-bit number

_ n—1 n—2 1 0
X==X 42" +X ,2" "+---+X,2 +X,2

Range: -2"-1to +2"-1-1

Example

1111 1111 1111 1111 1111 1111 1111 1100,
= 1x231 + 1x230 + + 1x22 +Qx21 +0x20

= —2,147,483,648 + 2,147,483,644 = -4,
Using 32 bits
—2,147,483,648 to +2,147,483,647

2s-Complement Signed Integers
Bit 31 is sign bit

1 for negative numbers
0 for non-negative numbers

—(=2"-1) can’t be represented

Non-negative numbers have the same unsigned
and 2s-complement representation

Some specific numbers
0: 0000 0000 ... 0000
-1 11111111 ... 1111
Most-negative: 1000 0000 ... 0000
Most-positive: 0111 1111 ... 1111

Signed Negation

Complement and add 1
Complement means 1 — 0,0 — 1

Xx+x=1111...111, =1

X+1=-X

Example: negate +2
+2 = 0000 0000 ... 0010,

-2 =1111 1111 ... 1101, + 1
= 1111 111 ... 1110,

Signh Extension

Representing a number using more bits
Preserve the numeric value

In MIPS instruction set

addi: extend immediate value

Ib, Ih: extend loaded byte/halfword

beq, bne: extend the displacement
Replicate the sign bit to the left

c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit

+2: 0000 0010 => 000 0010

-2: 11111110 => 111 1110

Next Lecture:

MIPS Instruction Representation

25

