
CS3350BCS3350B
Computer Architecture

Winter 2015

Lecture 6.1: Fundamentals of
Instructional Level ParallelismInstructional Level Parallelism

Marc Moreno MazaMarc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on Computer Organization and Design,
Patterson & Hennessy, 5th edition, 2011]y

0

Analogy: Gotta Do Laundry

Ann, Brian, Cathy, Dave
each have one load of clothes to wash,
dry fold and put away

A B C D
dry, fold, and put away

Washer takes 30 minutes

Dryer takes 30 minutes

“Folder” takes 30 minutes

“Stasher” takes 30 minutes to put
clothes into drawersclothes into drawers

1

Sequential Laundry

6 PM 7 8 9 10 11 12 1 2 AM

T
a
s

A
30

Time
30 30 3030 30 3030 30 30 3030 30 30 3030

s
k

O

B
C
DO

r
d

D

Sequential laundry takes 8 hours for 4 loads

e
r

Sequential laundry takes 8 hours for 4 loads

2

Pipelined Laundry

T

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30T
a
s B

A
Time3030 30 3030 30 30

k

O

B
C
DO

r
d
e

Pipelined laundry takes 3.5 hours for 4 loads!

e
r

3

Pipelining Lessons (1/2)

Pipelining doesn’t help
latency of single task, it
helps throughput of entire

6 PM 7 8 9
TimeT helps throughput of entire

workload

Multiple tasks operating

Time

A
303030 3030 30 30

T
a
s p p g

simultaneously using
different resources

Potential speedup = Number

B
C

k

O Potential speedup = Number
of pipe stages

Time to “fill” pipeline and

C
D

O
r
d p p

time to “drain” it reduces
speedup:
2.3x vs. 4x in this example

e
r

4

Pipelining Lessons (2/2)

Suppose new Washer
takes 20 minutes, new
Stasher takes 20 minutes

6 PM 7 8 9
TimeT Stasher takes 20 minutes.

How much faster is
pipeline?A

303030 3030 30 30
T
a
s
k Pipeline rate limited by

slowest pipeline stage
B
C

k

O
Unbalanced lengths of
pipe stages reduces
speedup

Dr
d
e p pe
r

5

Recap: MIPS Three Instruction Formats

31 25 20 15 0

R-format:
31 25 20 15 5 0

op rs rt rd functshamt
10

I-format: op rs rt address offset
31 25 20 15 0

31 25 0
J-format: op target address

Examples:

R-format: add, sub, jr

I-format: lw, sw, beq, bne

J-format: j jalJ format: j, jal

6

Recap: Five Stages in Executing MIPS

(1) Instruction Fetch (IFetch)

• Fetch an instruction; increment PC

(2) Instruction Decode (Dec)

• Decode instruction; read registers; sign extend offset

(3) ALU (Arithmetic-Logic Unit) (Exec)

• Execute R-format operations; calculate memory address; branch
i b h d j l ticomparison; branch and jump completion

(4) Memory Access (Mem)

• Read data from memory for load or write data to memory
for store

(5) Register Write (WB)(5) Register Write (WB)

• Write data back to register
7

Graphical Representation

io
n

ry rd

st
er

s

yC

in
st

ru
ct

i
m

em
o

+4

rt
rs

re
gi

s

ALU

D
at

a
m

em
or

y

imm

P
C

2. Decode/

+4 imm

1. Instruction 3 Execute 4 Memory5. Register
Register
Read

Fetch 3. Execute 4. Memory
Write

Short IFetch Dec Exec Mem WB

A

Short
name:

8

A
LUI$ Reg D$ RegGraphical

Representation:

Single Cycle CPU Clocking

All stages of an instruction completed within one
long clock cycleg y

Clock cycle sufficiently long to allow each instruction to
complete all stages without interruption within one cycle

1. Instruction
Fetch

2. Decode/
Register 3. Execute 4. Memory 5. Reg.

WriteFetch Register
Read

Write

9

Single Cycle Performance
Assume time for actions areAssume time for actions are

100ps for register read or write
200ps for other events200ps for other events

Clock rate of the single cycle datapath is?

I t I t R i t ALU M R i t T t l tiInstr Instr
fetch

Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500psbeq 200ps 100 ps 200ps 500ps

• What can we do to improve clock rate?
• Will this improve performance as well?• Will this improve performance as well?

Want increased clock rate to mean faster programs
10

Multiple-cycle CPU Clocking

Only one stage of instruction per clock cycle
Clock is made as long as the slowest stageClock is made as long as the slowest stage

1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register

Read

y g
Write

Advantages over single cycle execution:Advantages over single cycle execution:
Unused stages in a particular instruction can be skipped
OR instructions can be pipelined (overlapped)

11

How Can We Make It Faster?
Split the multiple instruction cycle into smaller and
smaller steps

There is a point of diminishing returns where as much time isThere is a point of diminishing returns where as much time is
spent loading the state registers as doing the work

Start fetching and executing the next instruction beforeStart fetching and executing the next instruction before
the current one has completed

Pipelining – (all?) modern processors are pipelined for
fperformance

Remember the performance equation:
CPU time = CPI * CC * IC

Fetch (and execute) more than one instruction at a time
S l i t t dSuperscalar processing – stay tuned

12

A Pipelined MIPS Processor
Start the next instruction before the current one hasStart the next instruction before the current one has
completed

improves throughput - total amount of work done in a given time
instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 7Cycle 6 Cycle 8

IFetch Dec Exec Mem WBlw

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some instructions, some stages are wasted cycles

13

Why Pipeline? For Performance!

Under ideal conditions and with a large number of instructions,
the speed-up from pipelining is approximately equal to the
number of pipe stages.

Time (clock cycles)

A five-stage pipeline is nearly five times faster.

I
n

Inst 0

A
LUI$ Reg D$ Reg

A

Once the
pipeline is full,
one instruction

s
t
r.

Inst 1

Inst 2
A

LUI$ Reg D$ Reg
A

LUI$ Reg D$ Reg

one instruction
is completed

every cycle, so
CPI = 1

O
r
d Inst 4

Inst 3

A
LUI$ Reg D$ Reg

A
LI$ Reg D$ Reg

e
r

Inst 4 LUg g
Time to fill the pipeline

14

Pipeline Performance

Assume time for stages is
100ps for register read or write
200ps for other stages

What is pipelined clock rate?p p
Compare pipelined datapath with single-cycle datapath

I I R i ALU M R i T l iInstr Instr
fetch

Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500psbeq 200ps 100 ps 200ps 500ps

15

Pipeline Performance
Single-cycle (Tc= 800ps)g y (c p)

Pipelined (Tc= 200ps)Pipelined (Tc 200ps)

16

Pipeline Speedup
If all stages are balanced (i.e. all take the same time) and there
are no dependencies between the instructions,

CPI = 1 (each instruction takes 5 cycles but 1 completes each cycle)CPI = 1 (each instruction takes 5 cycles, but 1 completes each cycle)

Ideal speedup is:
Time between instructionsnonpipelinedNumber of stages =
Ti b t i t tiTime between instructionspipelined

Speedup due to increased throughput;
Latency (time for each instruction) does not decreaseLatency (time for each instruction) does not decrease

If not balanced, speedup is less

Pipelining the three lw speedup: 2400ps/1400ps = 1 7• Pipelining the three lw, speedup: 2400ps/1400ps = 1.7

• Add 1000,000 more instructions, the speedup:

(10^6*200+1400)/(10^6*800+2400) ~ 800/200 = 4

17

(10^6 200+1400)/(10^6 800+2400) ~ 800/200 = 4

MIPS Pipeline Datapath Modifications
What do we need to add/modify in our MIPS datapath?What do we need to add/modify in our MIPS datapath?

Add State registers between each pipeline stage to isolate them

IF IF t h ID D EX E t MEM WBIF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Add

4 Shift Add

Read
Address

Instruction
Memory

PC

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

ALU

left 2

Data
Memory

Address Read
D tFe

tc
h/

D
ec

c/
Ex

ec

c/
M

em

W
B

Address

Write Data

Write Addr Read
Data 2

ALU

Write Data

DataIF

D
ec

Ex
ec

M
em

/W

Sign
16 32

System Clock

Sign
Extend

18

Pipelining the MIPS ISA

MIPS Instruction Set designed for pipeliningMIPS Instruction Set designed for pipelining

All instructions are 32-bits
E i t f t h d d d i lEasier to fetch and decode in one cycle
x86: 1- to 17-byte instructions
(x86 HW actually translates to internal RISC instructions!)(y)

Few and regular instruction formats, 2 source register
fields always in same place

Can decode and read registers in one step

Memory operands only in Loads and Stores
Can calculate address at 3rd stage, access memory at 4th stage

Alignment of memory operands
Memory access takes only one cycle

19

Other Sample Pipeline Alternatives

ARM7
IM Reg EX

PC update decode ALU opPC update
IM access

decode
reg

access

ALU op
DM access
shift/rotate
commit result

(write back)

Intel XScale

(write back)

Intel XScale A
LUIM1 IM2 DM1 Reg

DM2
Reg SHFT

PC update
BTB access

decode
reg 1 access ALU op

DM write
reg writeBTB access

start IM access

IM access

reg 1 access

shift/rotate
reg 2 access

p

start DM access
exception

reg write

20

Can Pipelining Get us Into Trouble?
Yes: Pipeline Hazards

structural hazards: attempt to use the same resource by two
different instructions at the same time
data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipelineinstruction still in the pipeline

control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculatednew PC target address calculated

- branch instructions

Can always resolve hazards by waiting
pipeline control must detect the hazard
and take action to resolve hazardsand take action to resolve hazards

21

Takeaway
All modern day processors use pipeliningAll modern day processors use pipelining
Pipelining doesn’t help latency of single task, it helps
throughput of entire workloadg p
Potential speedup: a CPI of 1 and a faster CC

Recall CPU time = CPI * CC * IC

Pipeline rate limited by slowest pipeline stage
Unbalanced pipe stages make for inefficiencies
The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

Must detect and resolve hazardsMust detect and resolve hazards
Stalling negatively affects CPI (makes CPI more than the
ideal of 1)
Compiler can arrange code to avoid hazards and stalls:
Requires knowledge of the pipeline structure

22

