
CS3350B
 Computer Architecture

Winter 2015

Lecture 6.3: Instructional Level Parallelism:

Advanced Techniques

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2011]

0

http://www.cse.psu.edu/~

Greater Instruction-Level Parallelism

 Deeper pipeline (more #stages: 5 => 10 => 15 stages)

 Less work per stage shorter clock cycle

 Multiple issue “superscalar”

 Replicate pipeline stages multiple pipelines

- e.g., have two ALUs or a register file with 4 read ports and 2 write ports

- have logic to issue several instructions concurrently

 Execute more than one instruction at a clock cycle, producing an
effective CPI < 1, so use Instructions Per Cycle (IPC)

 e.g., 4GHz 4-way multiple-issue

- 16 BIPS, peak CPI = 0.25, peak IPC = 4

 If a datapath has a 5-stage pipeline, how many instructions are active
in the pipeline at any given time?

 But dependencies reduce this in practice

1

Pipeline Depth and Issue Width

 Intel Processors over Time

Microprocessor Year Clock

Rate

Pipeline

Stages

Issue

width

Cores Power

i486 1989 25 MHz 5 1 1 5W

Pentium 1993 66 MHz 5 2 1 10W

Pentium Pro 1997 200 MHz 10 3 1 29W

P4 Willamette 2001 2000 MHz 22 3 1 75W

P4 Prescott 2004 3600 MHz 31 3 1 103W

Core 2 Conroe 2006 2930 MHz 14 4 2 75W

Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W

Core i7 Gulftown 2010 3460 MHz 16 4 6 130W

2

Multiple-Issue Processor Styles

 Static multiple-issue processors, aka VLIW (very-long
instruction word)

 Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

 e.g. Intel Itanium and Itanium 2

- 128-bit “bundles” containing three instructions

- Five functional units (IntALU, Mmedia, Dmem, FPALU,
Branch)

- Extensive support for speculation and predication

 Dynamic multiple-issue processors (aka SuperScalar)

 Decisions on which instructions to execute simultaneously (in
the range of 2 to 8) are being made dynamically (at run time
by the hardware)

- e.g., IBM power series, Pentium 4, MIPS R10K, AMD Barcelona

3

Multiple-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software
fixes, the fundamental limitations of

 How many instructions to issue in one clock cycle – issue slots

 Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low
ILP

 Procedural dependencies – aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards

- A SS/VLIW processor has a much larger number of potential
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or
by pipelining the resource

4

Static Multiple Issue Machines (VLIW)

 Static multiple-issue processors (aka VLIW) use the
compiler (at compile-time) to statically decide which
instructions to issue and execute simultaneously

 Issue packet – the set of instructions that are bundled together
and issued in one clock cycle – think of it as one large instruction
with multiple operations

 The mix of instructions in the packet (bundle) is usually restricted
– a single “instruction” with several predefined fields

 The compiler does static branch prediction and code
scheduling to reduce (control) or eliminate (data) hazards

 VLIW’s have

 Multiple functional units

 Multi-ported register files

 Wide program bus

5

An Example: A VLIW MIPS

 Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)

or

Branch (I format)

Load or Store (I format)

64 bits

 Instructions are always fetched, decoded, and issued in

pairs

 If one instr of the pair can not be used, it is replaced with a nop

 Need 4 read ports and 2 write ports and a separate

memory address adder

6

Code Scheduling Example

 Consider the following loop code

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

 Must “schedule” the instructions to avoid pipeline stalls

 Instructions in one bundle must be independent

 Must separate load/use instructions from their loads by one cycle

 Notice that the first two instructions have a load/use

dependency, the next two and last two have data dependencies

 Assume branches are perfectly predicted by the hardware

/* increment each element (unsigned integer) in array A by n */
for (i=m; i>=0; --i) /* m is the initial value of $s1 */

 A[i] += n; /* n is the value in register $s2 */

7

The Scheduled Code (Not Unrolled)

 Four clock cycles to execute 5 instructions for a

 CPI of 0.8 (versus the best case of 0.5?)

 IPC of 1.25 (versus the best case of 2.0?)

 noops don’t count towards performance !!

ALU or branch Data transfer CC

lp: nop lw $t0,0($s1) 1

addi $s1,$s1,-4 nop 2

addu $t0,$t0,$s2 nop 3

bne $s1,$0,lp sw $t0,4($s1) 4

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

Loop Unrolling

 Loop unrolling – multiple copies of the loop body are
made and instructions from different iterations are
scheduled together as a way to increase ILP

 Apply loop unrolling (4 times for our example) and then
schedule the resulting code

 Eliminate unnecessary loop overhead instructions

 Schedule so as to avoid load use hazards

 During unrolling the compiler applies register renaming to
eliminate all data dependencies that are not true data
dependencies

9

Loop Unrolling in C

10

for (i=m; i>=0; --i)

 A[i] += n;

/* unrolled 4 times */

for (i=m; i>=0; i-=4){

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n; }

Assume size of A is 8, i.e. m=7.

Execute unrolled code:

Iteration #1, i=7:

 { A[7] += n;

 A[6] += n;

 A[5] += n;

 A[4] += n; }

Iteration #2, i=3:

 { A[3] += n;

 A[2] += n;

 A[1] += n;

 A[0] += n; }

Iteration # i Instruction

 1 7 A[7] += n

 2 6 A[6] += n

 3 5 A[5] += n

 4 4 A[4] += n

 5 3 A[3] += n

 6 2 A[2] += n

 7 1 A[1] += n

 8 0 A[0] += n

Execute not-unrolled code:

Apply Loop Unrolling for 4 times
lp: lw $t0,0($s1) # $t0=array element

 lw $t1,-4($s1) # $t1=array element

 lw $t2,-8($s1) # $t2=array element

 lw $t3,-12($s1)# $t3=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 addu $t1,$t1,$s2 # add scalar in $s2

 addu $t2,$t2,$s2 # add scalar in $s2

 addu $t3,$t3,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 sw $t1,-4($s1) # store result

 sw $t2,-8($s1) # store result

 sw $t3,-12($s1)# store result

 addi $s1,$s1,-16 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

11

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2# add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1!=0

/* code in c */

for(i=m;i>=0;i-=4)

{

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n;

}

• Why not reuse $t0

but use $t1, $t2,

$t3?

• Why -4,-8,-12 and

$s1=$s1-16?

• How many times

can a loop be

unrolled?

The Scheduled Code (Unrolled)

 Eight clock cycles to execute
14 instructions for a

 CPI of 0.57
(versus the best case of 0.5)

 IPC of 1.8
(versus the best case of 2.0)

ALU or branch Data transfer CC

lp: addi $s1,$s1,-16 lw $t0,0($s1) 1

nop lw $t1,12($s1) #-4 2

addu $t0,$t0,$s2 lw $t2,8($s1) #-8 3

addu $t1,$t1,$s2 lw $t3,4($s1) #-12 4

addu $t2,$t2,$s2 sw $t0,16($s1) #0 5

addu $t3,$t3,$s2 sw $t1,12($s1) #-4 6

nop sw $t2,8($s1) #-8 7

bne $s1,$0,lp sw $t3,4($s1) #-12 8

/* code in c */

for(i=m;i>=0;i-=4)

{

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n;

}

Summary of Compiler Support for VLIW Processors

 The compiler packs groups of independent instructions
into the bundle

 Done by code re-ordering (trace scheduling)

 The compiler uses loop unrolling to expose more ILP

 The compiler uses register renaming to solve name
dependencies and ensures no load use hazards occur

 While superscalars use dynamic prediction, VLIW’s
primarily depend on the compiler for branch prediction

 Loop unrolling reduces the number of conditional branches

 Predication eliminates if-then-else branch structures by replacing
them with predicated instructions

 The compiler predicts memory bank references to help
minimize memory bank conflicts

14

VLIW Advantages & Disadvantages

 Advantages

 Simpler hardware (potentially less power hungry)

 Potentially more scalable

- Allow more instr’s per VLIW bundle and add more FUs

 Disadvantages

 Programmer/compiler complexity and longer compilation times

- Deep pipelines and long latencies can be confusing (making peak
performance elusive)

 Lock step operation, i.e., on hazard all future issues stall until
hazard is resolved (hence need for predication)

 Object (binary) code incompatibility

 Needs lots of program memory bandwidth

 Code bloat

- Noops are a waste of program memory space

- Loop unrolling to expose more ILP uses more program memory
space

15

Dynamic Multiple Issue Machines (SS)

 Dynamic multiple-issue processors (aka SuperScalar) use
hardware at run-time to dynamically decide which
instructions to issue and execute simultaneously

 Instruction-fetch and issue – fetch instructions, decode
them, and issue them to a FU to await execution

 Instruction-execution – as soon as the source operands
and the FU are ready, the result can be calculated

 Instruction-commit – when it is safe to, write back results
to the RegFile or D$ (i.e., change the machine state)

16

17

Dynamic Multiple Issue Machines (SS)

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out of order to
avoid stalls

 But commit result to registers in order

 Example

 lw $t0, 20($s2)

addu $t1, $t0, $t2

subu $s4, $s4, $t3

slti $t5, $s4, 20

 Can start subu while addu is waiting for lw

18

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule code?

 Disadvantages of complier scheduling code

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have different
latencies and hazards

19

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

- If so, complete the operation

- If not, roll-back and do the right thing

Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome (Branch Prediction)

- Roll back if path taken is different

 Speculate on load

- Roll back if location is updated

20

Out Of Order Intel

 All use OOO since 2001

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Core 2 Yorkfield 2008 2930MHz 16 4 Yes 4 95W

Core i7 Gulftown 2010 3460MHz 16 4 Yes 6 130W

21

Streaming SIMD Extensions (SSE)

 SIMD: Single Instruction Multiple Data

 A data parallel architecture

 Both current AMD and Intel’s x86 processors have ISA
and micro-architecture support SIMD operations

 MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX

 Many functional units

 8 128‐bit vector registers: XMM0, XMM1, …, XMM7

 See the flag field in /proc/cpuinfo

 SSE (Streaming SIMD extensions): a SIMD instruction
set extension to the x86 architecture

 Instructions for operating on multiple data simultaneously (vector
operations): for (i=0; i<n; ++i) Z[i]=X[i]+Y[i];

 Programming SSE in C++: intrinsics
22

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate
 e.g., pointer aliasing

 Some parallelism is hard to expose
 Limited window size during instruction issue

Memory delays and limited bandwidth
 Hard to keep pipelines full

 Speculation can help if done well

23

Takeaway

 Pipelining is an important form of ILP

 Challenge is hazards

 Forwarding helps with many data hazards

 Delayed branch helps with control hazard in 5 stage pipeline

 Load delay slot / interlock necessary

 More aggressive performance:

 Longer pipelines

 VLIW

 Superscalar

 Out-of-order execution

 Speculation

 SSE?

24

