
CS3350B 
 Computer Architecture  

Winter 2015 

 
Lecture 6.3: Instructional Level Parallelism: 

Advanced Techniques 

Marc Moreno Maza 

www.csd.uwo.ca/Courses/CS3350b  

 
[Adapted from lectures on Computer Organization and Design,  

Patterson & Hennessy, 5th edition, 2011] 

0 

http://www.cse.psu.edu/~


Greater Instruction-Level Parallelism 

 Deeper pipeline (more #stages: 5 => 10 => 15 stages) 

 Less work per stage  shorter clock cycle 

 Multiple issue “superscalar” 

 Replicate pipeline stages  multiple pipelines 

- e.g., have two ALUs or a register file with 4 read ports and 2 write ports 

- have logic to issue several instructions concurrently 

 Execute more than one instruction at a clock cycle, producing an 
effective CPI < 1, so use Instructions Per Cycle (IPC) 

 e.g., 4GHz 4-way multiple-issue 

- 16 BIPS, peak CPI = 0.25, peak IPC = 4 

 If a datapath has a 5-stage pipeline, how many instructions are active 
in the pipeline at any given time? 

 But dependencies reduce this in practice 
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Pipeline Depth and Issue Width 

 Intel Processors over Time 

Microprocessor Year Clock 

Rate 

Pipeline 

Stages 

Issue 

width 

Cores Power 

i486 1989 25 MHz 5 1 1 5W 

Pentium 1993 66 MHz 5 2 1 10W 

Pentium Pro 1997 200 MHz 10 3 1 29W 

P4 Willamette 2001 2000 MHz 22 3 1 75W 

P4 Prescott 2004 3600 MHz 31 3 1 103W 

Core 2 Conroe 2006 2930 MHz 14 4 2 75W 

Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W 

Core i7 Gulftown 2010 3460 MHz 16 4 6 130W 
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Multiple-Issue Processor Styles 

 Static multiple-issue processors, aka VLIW (very-long 
instruction word) 

 Decisions on which instructions to execute simultaneously are 
being made statically (at compile time by the compiler) 

 e.g. Intel Itanium and Itanium 2  

- 128-bit “bundles” containing three instructions 

- Five functional units (IntALU, Mmedia, Dmem, FPALU, 
Branch) 

- Extensive support for speculation and predication 

 Dynamic multiple-issue processors (aka SuperScalar) 

 Decisions on which instructions to execute simultaneously (in 
the range of 2 to 8)  are being made dynamically (at run time 
by the hardware)  

- e.g., IBM power series, Pentium 4, MIPS R10K, AMD Barcelona 
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Multiple-Issue Datapath Responsibilities 

 Must handle, with a combination of hardware and software 
fixes, the fundamental limitations of  

 How many instructions to issue in one clock cycle – issue slots 

 Storage (data) dependencies – aka data hazards 

- Limitation more severe in a SS/VLIW processor due to (usually) low 
ILP 

 Procedural dependencies – aka control hazards 

- Ditto, but even more severe 

- Use dynamic branch prediction to help resolve the ILP issue 

 Resource conflicts – aka structural hazards 

- A SS/VLIW processor has a much larger number of potential 
resource conflicts 

- Functional units may have to arbitrate for result buses and register-
file write ports 

- Resource conflicts can be eliminated by duplicating the resource or 
by pipelining the resource 
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Static Multiple Issue Machines (VLIW) 

 Static multiple-issue processors (aka VLIW) use the 
compiler (at compile-time) to statically decide which 
instructions to issue and execute simultaneously 

 Issue packet – the set of instructions that are bundled together 
and issued in one clock cycle – think of it as one large instruction 
with multiple operations 

 The mix of instructions in the packet (bundle) is usually restricted 
– a single “instruction” with several predefined fields 

 The compiler does static branch prediction and code 
scheduling to reduce (control) or eliminate (data) hazards 

 VLIW’s have 

 Multiple functional units 

 Multi-ported register files 

 Wide program bus 
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An Example: A VLIW MIPS 

 Consider a 2-issue MIPS with a 2 instr bundle 

ALU Op (R format) 

or 

Branch (I format) 

Load or Store (I format) 

64 bits 

 Instructions are always fetched, decoded, and issued in 

pairs 

 If one instr of the pair can not be used, it is replaced with a nop 

 Need 4 read ports and 2 write ports and a separate 

memory address adder 
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Code Scheduling Example 

 Consider the following loop code 

lp: lw $t0,0($s1)  # $t0=array element 

  addu $t0,$t0,$s2  # add scalar in $s2 

  sw $t0,0($s1)   # store result 

  addi $s1,$s1,-4   # decrement pointer 

  bne $s1,$0,lp    # branch if $s1 != 0 

 Must “schedule” the instructions to avoid pipeline stalls 

 Instructions in one bundle must be independent 

 Must separate load/use instructions from their loads by one cycle 

 Notice that the first two instructions have a load/use 

dependency, the next two and last two have data dependencies  

 Assume branches are perfectly predicted by the hardware 

/* increment  each element (unsigned integer) in array A by n    */ 
for (i=m; i>=0; --i)    /* m is the initial value of $s1    */ 

       A[i] += n;           /* n is the value in register $s2 */ 
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The Scheduled Code (Not Unrolled) 

 Four clock cycles to execute 5 instructions for a 

 CPI of 0.8 (versus the best case of 0.5?) 

 IPC of 1.25 (versus the best case of 2.0?) 

 noops don’t count towards performance !! 

ALU or branch Data transfer CC 

lp: nop lw  $t0,0($s1) 1 

addi  $s1,$s1,-4 nop 2 

addu  $t0,$t0,$s2 nop 3 

bne   $s1,$0,lp sw  $t0,4($s1) 4 

lp: lw $t0,0($s1)  # $t0=array element 

  addu $t0,$t0,$s2  # add scalar in $s2 

  sw $t0,0($s1)   # store result 

  addi $s1,$s1,-4   # decrement pointer 

  bne $s1,$0,lp    # branch if $s1 != 0 



Loop Unrolling 

 Loop unrolling – multiple copies of the loop body are 
made and instructions from different iterations are 
scheduled together as a way to increase ILP 

 

 Apply loop unrolling (4 times for our example) and then 
schedule the resulting code 

 Eliminate unnecessary loop overhead instructions 

 Schedule so as to avoid load use hazards 

 

 During unrolling the compiler applies register renaming to 
eliminate all data dependencies that are not true data 
dependencies 
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Loop Unrolling in C 
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for (i=m; i>=0; --i)     

       A[i] += n;       

/* unrolled 4 times */  

for (i=m; i>=0; i-=4){  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; } 

Assume size of A is 8, i.e. m=7. 

Execute unrolled code: 

Iteration #1, i=7: 

   { A[7] += n;  

     A[6] += n; 

     A[5] += n;     

     A[4] += n; } 

 

Iteration #2, i=3: 

   { A[3] += n;  

     A[2] += n; 

     A[1] += n;     

     A[0] += n; } 

Iteration #  i  Instruction 

          1  7  A[7] += n  

          2  6  A[6] += n 

          3  5  A[5] += n     

          4  4  A[4] += n  

          5  3  A[3] += n  

          6  2  A[2] += n 

          7  1  A[1] += n  

          8  0  A[0] += n  

Execute not-unrolled code: 



Apply Loop Unrolling for 4 times 
lp: lw    $t0,0($s1)  # $t0=array element 

   lw    $t1,-4($s1) # $t1=array element 

   lw    $t2,-8($s1) # $t2=array element 

   lw    $t3,-12($s1)# $t3=array element 

   addu  $t0,$t0,$s2 # add scalar in $s2 

   addu  $t1,$t1,$s2 # add scalar in $s2 

   addu  $t2,$t2,$s2 # add scalar in $s2 

   addu  $t3,$t3,$s2 # add scalar in $s2 

   sw    $t0,0($s1)  # store result 

   sw    $t1,-4($s1) # store result 

   sw    $t2,-8($s1) # store result 

   sw    $t3,-12($s1)# store result 

   addi  $s1,$s1,-16 # decrement pointer 

   bne   $s1,$0,lp   # branch if $s1 != 0 
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lp: lw   $t0,0($s1) # $t0=array element 

   addu $t0,$t0,$s2# add scalar in $s2 

   sw    $t0,0($s1) # store result 

   addi $s1,$s1,-4 # decrement pointer 

   bne  $s1,$0,lp  # branch if $s1!=0 

/* code in c */  

for(i=m;i>=0;i-=4) 

{  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; 

} 

• Why not reuse $t0 

but use $t1, $t2, 

$t3? 

 

• Why -4,-8,-12 and 

$s1=$s1-16? 

 

• How many times 

can a loop be 

unrolled?  



The Scheduled Code (Unrolled) 

 Eight clock cycles to execute 
14 instructions for a 

 CPI of 0.57  
(versus the best case of 0.5) 

 IPC of 1.8  
(versus the best case of 2.0) 

ALU or branch Data transfer CC 

lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1 

nop lw  $t1,12($s1) #-4 2 

addu  $t0,$t0,$s2 lw  $t2,8($s1)  #-8 3 

addu  $t1,$t1,$s2 lw  $t3,4($s1)  #-12 4 

addu  $t2,$t2,$s2 sw  $t0,16($s1) #0 5 

addu  $t3,$t3,$s2 sw  $t1,12($s1) #-4 6 

nop sw  $t2,8($s1)  #-8 7 

bne   $s1,$0,lp sw  $t3,4($s1)  #-12 8 

/* code in c */  

for(i=m;i>=0;i-=4) 

{  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; 

} 



Summary of Compiler Support for VLIW Processors 

 The compiler packs groups of independent instructions 
into the bundle 

 Done by code re-ordering (trace scheduling) 

 The compiler uses loop unrolling to expose more ILP  

 The compiler uses register renaming to solve name 
dependencies and ensures no load use hazards occur 

 While superscalars use dynamic prediction, VLIW’s 
primarily depend on the compiler for branch prediction 

 Loop unrolling reduces the number of conditional branches 

 Predication eliminates if-then-else branch structures by replacing 
them with predicated instructions 

 The compiler predicts memory bank references to help 
minimize memory bank conflicts 
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VLIW Advantages & Disadvantages 

 Advantages 

 Simpler hardware (potentially less power hungry) 

 Potentially more scalable 

- Allow more instr’s per VLIW bundle and add more FUs 

 Disadvantages 

 Programmer/compiler complexity and longer compilation times 

- Deep pipelines and long latencies can be confusing (making peak 
performance elusive) 

 Lock step operation, i.e., on hazard all future issues stall until 
hazard is resolved (hence need for predication) 

 Object (binary) code incompatibility 

 Needs lots of program memory bandwidth 

 Code bloat 

- Noops are a waste of program memory space  

- Loop unrolling to expose more ILP uses more program memory 
space 
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Dynamic Multiple Issue Machines (SS) 

 Dynamic multiple-issue processors (aka SuperScalar) use 
hardware at run-time to dynamically decide which 
instructions to issue and execute simultaneously 

 Instruction-fetch and issue – fetch instructions, decode 
them, and issue them to a FU to await execution 

 Instruction-execution – as soon as the source operands 
and the FU are ready, the result can be calculated 

 Instruction-commit – when it is safe to, write back results 
to the RegFile or D$ (i.e., change the machine state) 
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Dynamic Multiple Issue Machines (SS) 



Dynamic Pipeline Scheduling 

 Allow the CPU to execute instructions out of order to 
avoid stalls 

 But commit result to registers in order 

 Example 

 lw    $t0, 20($s2) 

addu  $t1, $t0, $t2 

subu  $s4, $s4, $t3 

slti  $t5, $s4, 20 

 Can start subu while addu is waiting for lw 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule code? 

 Disadvantages of complier scheduling code 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have different 
latencies and hazards 
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Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

- If so, complete the operation 

- If not, roll-back and do the right thing 

Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome (Branch Prediction) 

- Roll back if path taken is different 

 Speculate on load 

- Roll back if location is updated 
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Out Of Order Intel 

 All use OOO since 2001 

Microprocessor Year Clock Rate Pipeline 

Stages 

Issue 

width 

Out-of-order/ 

Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

Core 2 Yorkfield 2008 2930MHz 16 4 Yes 4 95W 

Core i7 Gulftown 2010 3460MHz 16 4 Yes 6 130W 
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Streaming SIMD Extensions (SSE) 

 SIMD: Single Instruction Multiple Data 

 A data parallel architecture 

 Both current AMD and Intel’s x86 processors have ISA 
and micro-architecture support SIMD operations 

 MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX 

 Many functional units 

 8 128‐bit vector registers: XMM0, XMM1, …, XMM7 

 See the flag field in /proc/cpuinfo 

 SSE (Streaming SIMD extensions): a SIMD instruction 
set extension to the x86 architecture 

 Instructions for operating on multiple data simultaneously (vector 
operations): for  (i=0; i<n; ++i)  Z[i]=X[i]+Y[i]; 

 Programming SSE in C++: intrinsics 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 
 e.g., pointer aliasing 

 Some parallelism is hard to expose 
 Limited window size during instruction issue 

Memory delays and limited bandwidth 
 Hard to keep pipelines full 

 Speculation can help if done well 
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Takeaway 

 Pipelining is an important form of ILP 

 Challenge is hazards 

 Forwarding helps with many data hazards 

 Delayed branch helps with control hazard in 5 stage pipeline 

 Load delay slot / interlock necessary 

 More aggressive performance:  

 Longer pipelines 

 VLIW 

 Superscalar 

 Out-of-order execution 

 Speculation 

 

 SSE?  
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