
CS3350B 
 Computer Architecture  

Winter 2015 

 
Lecture 7.1: Multicore: Basics and Key Issues 

Marc Moreno Maza 

www.csd.uwo.ca/Courses/CS3350b  

 
[Adapted from lectures on  

Computer Organization and Design,  

Patterson & Hennessy, 4th or 5th edition, 2011] 

0 

http://www.cse.psu.edu/~


Why We need Multiprocessors? 

Uniprocessor performance 

 25% annual improvement rate from 1978 to 1986 

 52% annual improvement rate from 1986 to 2002 

- Profound impact of RISC, x86 

 20% annual improvement rate from 2002 to present 

- Power wall: solutions for higher ILP are power-
inefficient 

- ILP wall: hard to exploit more ILP 

- Memory wall: ever-increasing memory latency relative 
to processor speed 

 

1 



Beyond Implicit Parallelism 

 Consider “atxpy”: 
 

double a, x[SIZE], y[SIZE], z[SIZE]; 

void atxpy(){ 

   for (i = 0; i < SIZE; i++) 

     z[i] = a*x[i] + y[i];  

} 

 

 Lots of instruction-level parallelism (ILP) 

 Great! 

 But how much can we really exploit?  4-issue?  8-issue? 

- Limits to (efficient) super-scalar execution 
 

 But, if SIZE is 10,000 the loop has 10,000-way parallelism! 

 How do we exploit it? 

2 



Where are We Now? 

 Multiprocessor – a computer system with at least two 

processors 

 

 

 

 

 

 

 

 Can deliver high throughput for independent jobs via job-level 

parallelism or process-level parallelism 
 

 And improve the run time of a single program that has been 

specially crafted to run on a multiprocessor - a parallel 

processing program 

Processor Processor Processor 

Cache Cache Cache 

Interconnection Network 

Memory I/O 

3 



Multicores Now Common 

 The power challenge has forced a change in the design 

of microprocessors 

 Since 2002 the rate of improvement in the response time of 

programs has slowed from a factor of 1.5 per year to less than a 

factor of 1.2 per year 
 

 Today’s microprocessors typically contain more than one 

core – Chip Multicore microProcessors (CMPs) – in a 

single IC 

 The number of cores is expected to double every two years 

 
Product AMD 

Barcelona 

Intel 

Nehalem 

IBM Power  

6 

Sun Niagara 

2 

Cores per chip 4 4 2 8 

Clock rate 2.5 GHz ~2.5 GHz? 4.7 GHz 1.4 GHz 

Power 120 W ~100 W? ~100 W? 94 W 

4 



Transition to Multicore 

Sequential App 
Performance 

5 



Other Multiprocessor Basics 

 Some of the problems that need higher performance can 

be handled simply by using a cluster – a set of 

independent servers (or PCs) connected over a local 

area network (LAN) functioning as a single large 

multiprocessor 

 Search engines, Web servers, email servers, databases, … 

 

 A key challenge is to craft parallel (concurrent) programs 

that have high performance on multiprocessors as the 

number of processors increase – i.e., that scale 

 Scheduling, load balancing, time for synchronization, overhead 

for communication 

6 



Multicore vs Multi-processor 

Multicore Processor with 

Shared L2 Cache 
Multi-Processor System with 

Cores that share L2 Cache 

7 



Multicore Organization Alternatives 

(a) ARM11 MPCore 

 

(b) AMD Opteron 

(c) Intel Core Duo 

 

(d) Intel Core i7 

8 



Itanium 2 Dual Core 

9 



High Level Multicore Architectural view 

A A A A 

E E E E 

C1 C2 

B B 

A A 

E E 

C 

B 

Intel Core 2  
Duo Processor 

Intel Core 2  
Quad Processor 

A = Architectural State        E = Execution Engine & Interrupt  
C = 2nd Level Cache           B = Bus Interface connects to main memory & I/O 

 
Memory 

 
Memory 

64B Cache Line 
64B Cache Line 

Dual Core has shared cache, Quad core  
has both shared And separated cache 

Intel® Core™ Microarchitecture – Memory Sub-system 

10 



Intel Core i7 Block Diagram 

 November 2008 

 Four x86 SMT processors 

 Dedicated L2, shared L3 cache 

 Speculative pre-fetch for caches 

 On chip DDR3 memory controller 

 Three 8 byte channels (192 
bits) giving 32GB/s 

 No front side bus 

 QuickPath Interconnection 

 Cache coherent point-to-point link 

 High speed communications between processor chips 

 6.4G transfers per second, 16 bits per transfer 

 Dedicated bi-directional pairs 

 Total bandwidth 25.6GB/s 
11 



Simultaneous Multithreading (SMT) 

 A variation on multithreading that uses the resources of a 

multiple-issue, dynamically scheduled processor 

(superscalar) to exploit both program ILP and thread-level 

parallelism (TLP) 

 Most SS processors have more machine level parallelism than 

most programs can effectively use (i.e., than have ILP) 

 With register renaming and dynamic scheduling, multiple 

instructions from independent threads can be issued without 

regard to dependencies among them 

- Need separate rename tables for each thread or need to be able to 

indicate which thread the entry belongs to 

- Need the capability to commit from multiple threads in one cycle 

 

 Intel’s Pentium 4 SMT is called hyperthreading 

 Supports just two threads (doubles the architecture state) 

12 



SMT 

13 



Cache Coherence 

 What is the coherence problem? 

 Core writes to a location in its L1 cache 

 Other L1 caches may hold shared copies - these will be 
immediately out of date 

 The core may either 

 Write through to L2 cache and/or memory 

 Copy back only when cache line is rejected 

 In either case because each core may have its own copy, it is 
not sufficient just to update L2 and/or memory 

14 



Cache Coherence in Multicores 

 In multicore processors its likely that the cores will share 
a common physical address space, causing a cache 
coherence problem 

Core 1 Core 2 

L1 I$ L1 D$ 

Unified (shared) L2 

L1 I$ L1 D$ 

X = 0 

X = 0 X = 0 

Read X Read X 

Write 1 to X 

X = 1 

X = 1 

read again 

 X = ? 

16 



A Coherent Memory System 

 Any read of a data item should return the most recently 

written value of the data item 

 Coherence – defines what values can be returned by a read 

- Writes to the same location are serialized (two writes to the same 

location must be seen in the same order by all cores) 

 Consistency – determines when a written value will be returned 

by a read 

 To enforce coherence, caches (hardware) must provide 

 Replication of shared data items in multiple cores’ caches 

 Replication reduces both latency and contention for a read shared 

data item 

 Migration of shared data items to a core’s local cache 

 Migration reduced the latency of the access the data and the 

bandwidth demand on the shared memory (L2 in our example) 

17 



Snooping Protocols 

 Schemes where every core knows which other core has a 
copy of its cached data are far too complex. 

 So each core (cache system) ‘snoops’ (i.e. watches 
continually) for activity concerned with data addresses 
which it has cached. 

 This has normally been implemented with a bus structure 
which is ‘global’, i.e. all communication can be seen by all 

 Snooping Protocols can be implemented without a bus, but 
for simplicity the next slides assume a shared bus. 

 There are ‘directory based’ coherence schemes but we will 
not consider them this year. 

18 



Snooping Protocols 

Write Invalidate 

1. A core wanting to write to an address, grabs a 
bus cycle and sends a ‘write invalidate’ 
message which contains the address 

2. All snooping caches invalidate their copy of 
appropriate cache line 

3. The core writes to its cached copy (assume for 
now that it also writes through to memory) 

4. Any shared read in other cores will now miss in 
cache and re-fetch the new data. 

19 



Snooping Protocols 

Write Update 
1. A core wanting to write grabs bus cycle and broadcasts 

address & new data as it updates its own copy 

2. All snooping caches update their copy 

 

Note that in both schemes, the problem of simultaneous 
writes is taken care of by bus arbitration - only one core 
can use the bus at any one time. 

20 



Update or Invalidate? 

Update looks the simplest, most obvious and 
fastest, but: 

 Multiple writes to the same word (no intervening read) 
need only one invalidate message but would require 
an update for each 
 

 Writes to same block in (usual) multi-word cache 
block require only one invalidate but would require 
multiple updates. 

21 



Update or Invalidate? 

Due to both spatial and temporal locality, the 
previous cases occur often. 

Bus bandwidth is a precious commodity in shared 
memory multi-cores chips 

 Experience has shown that invalidate protocols 
use significantly less bandwidth. 

We will only consider implementation details only of 
the  invalidate protocols. 
 
All  commercial machines use write-invalidate as their 
standard coherence protocol 

22 



Implementation Issues 

 In both schemes, knowing if a cached value is not shared 
(no copies in another cache) can avoid sending any 
messages. 

 Invalidate description assumed that a cache value 
update was written through to memory. If we used a 
‘copy back’ scheme (usual for high performance) other 
cores could re-fetch incorrect old value on a cache miss. 

 We need a protocol to handle all this. 

23 



MESI Protocol (1) 

A practical multi-core invalidate protocol which 
attempts to minimize bus usage. 

Allows usage of a ‘copy back’ scheme - i.e. 
L2/main memory is not updated until a ‘dirty’ 
cache line is displaced 

Extension of the usual cache tags, i.e. invalid tag 
and ‘dirty’ tag in normal copy back cache. 

To make the description simpler, we will ignore 
L2 cache and treat L2/main memory as a single 
main memory unit 

24 



MESI Protocol (2) 

Any cache line can be in one of 4 states (2 bits) 

 Modified – The cache line has been modified and is different 
from main memory – This is the only cached copy. (cf. ‘dirty’) 

 Exclusive – The cache line is the same as main memory and 
is the only cached copy 

 Shared - Same value as main memory but copies may exist in 
other caches. 

 Invalid - Line data is not valid (as in simple cache) 

25 



MESI Protocol (3) 

Cache line state changes are a function of memory 
access events. 

Events may be either 

 Due to local core activity (i.e. cache access) 

 Due to bus activity - as a result of snooping 

Each cache line has its own state affected only if 
the address matches 

26 



MESI Protocol (4) 

Operation can be described informally by looking 
at actions in a local core 

 Read Hit 

 Read Miss 

 Write Hit 

 Write Miss 

More formally by a state transition diagram 

27 



MESI Local Read Hit 

 The line must be in one of MES 

This must be the correct local value (if M it must 
have been modified locally) 

Simply return value 

No state change 

28 



MESI Local Read Miss 

A core makes read request to main memory upon 
a read miss: detailed action depends on copies 
in other cores 

Case 1: One cache has an E copy 

 The snooping cache puts the copy value on the bus 

 The memory access is abandoned 

 The local core caches the value 

 Both lines are set to S 

Case 2: No other copy in caches 

 The core waits for a memory response 

 The value is stored in the cache and marked E 

29 



MESI Local Read Miss 

Case 3: Several caches have a copy (S)  

 One snooping cache puts the copy value on 
the bus (arbitrated) 

 The memory access is abandoned 

 The local core caches the value and sets the 
tag to S 

 Other copies remain S 

30 



MESI Local Read Miss 

Case 4: One cache has M (modified) copy 

 The snooping cache puts its copy of the value 
on the bus 

 The memory access is abandoned 

 The local core caches the value and sets the 
tag to S 

 The source (M) value is copied back to 
memory 

 The source value changes its tag from M to S 

31 



MESI Local Write Hit 

Line must be one of MES 

 M 

 line is exclusive and already ‘dirty’ 

 Update local cache value 

 no state change 

 E 

 Update local cache value 

 Change E to M 

 S 

 Core broadcasts an invalidate on bus 

 Snooping cores with an S copy change S to I 

 The local cache value is updated 

 The local state changes from S to M 

32 



MESI Local Write Miss 

Detailed action depends on copies in other cores 

Case 1: No other copies 

 Local copy state set to M 

Case 2: Other copies, either one in state E or more in state S 

 Value read from memory to local cache - bus 
transaction marked RWITM (read with intent to modify) 

 The snooping cores see this and set their tags to I 

 The local copy is updated and sets the tag to M 

 

33 



MESI Local Write Miss 

Case 3: Another copy in state M 

Core issues bus transaction marked RWITM 

 The snooping core sees this 
- Blocks the RWITM request 

- Takes control of the bus 

- Writes back its copy to memory 

- Sets its copy state to I 

 The original local core re-issues RWITM request 

 This is now simply a no-copy case 
- Value read from memory to local cache 

- Local copy value updated 

- Local copy state set to M 

 
34 



Comments on MESI Protocol 

Relies on global view of all memory activity – 
usually implies a global bus 

Bus is a limited shared resource 

As number of cores increases 
 Demands on bus bandwidth increase – more total memory 

activity 

 The bus gets slower due to increased capacitive load 

General consensus is that bus-based systems 
cannot be extended beyond a small number (8 
or 16?) cores 

35 



Example of Snooping Invalidation 

 When the second miss by Core 2 occurs, Core 1 
responds with the value canceling the response from 
the L2 cache (and also updating the L2 copy)  

Core 1 Core 2 

L1 I$ L1 D$ 

Unified (shared) L2 

L1 I$ L1 D$ 

X = 0 

X = 0 X = 0 

Read X Read X 

Write 1 to X 

X = 1 

     

Read X 

X = I 

X = I X = 1 

X = 1 

37 



38 

Another Example for Write Invalidate Snooping 

 Must invalidate before step 3 

 All recent MPUs use write invalidate 
(invalidate protocols use significantly less bandwidth)  
 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 

u  = ? 

4 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

u = 7 



Block Size Effects on Multicores 

 Writes to one word in a multi-word block mean that the 
full block is invalidated 

 

 Multi-word blocks can also result in false sharing:  
when two cores are writing to two different variables that 
happen to fall in the same cache block 

 With write-invalidate, false sharing increases cache miss rates  

A B 

Core1 Core2 

4 word cache block 

39 



False Sharing 

 Performance issue in programs where cores may write to different 
memory addresses BUT in the same cache lines 

 Known as Ping-Ponging – Cache line is shipped between cores 

Core 0 Core 1 

T
im

e
 

1 0 

X[0] = 1 

X[1] = 1 

1 

X[0] = 0 X[1] = 0 

1 0 

X[0] = 2 

1 1 2 

False Sharing is not an issue in shared cache. 
It is an issue in separated cache 

40 



Coherency Misses 

1. True sharing misses arise from the communication of 
data through the cache coherence mechanism 

• Invalidates due to 1st write to shared block 

• Reads by another CPU of modified block in different 
cache 

• Miss would still occur if block size were 1 word 

2. False sharing misses when a block is invalidated 
because some word in the block, other than the one 
being read, is written into 

• Invalidation does not cause a new value to be 
communicated, but only causes an extra cache miss 

• Block is shared, but no word in block is actually shared 
  miss would not occur if block size were 1 word 

 

41 



MP Performance for Processor Commercial Workload: 
OLTP, Decision Support (Database), Search Engine 

42 

• Uniprocessor 

cache misses 

improve with 

cache size increase 
(Instruction, 

Capacity/Conflict, 

Compulsory)  

 

•True sharing and 

false sharing 

unchanged going 

from 1 MB to 8 MB 
(L3 cache) 

 

 

(M
e
m

o
ry

) 
C

y
c
le

s
 p

e
r 

In
s
tr

u
c
ti
o
n

 



MP Performance 2MB Cache Commercial Workload: 
OLTP, Decision Support (Database), Search Engine 

43 

True sharing, 

false sharing 

increase 

going from 1 

to 8 CPUs 

(M
e
m

o
ry

) 
C

y
c
le

s
 p

e
r 

In
s
tr

u
c
ti
o
n
 



Avoiding False Sharing  

Change either 

 Algorithm 

 adjust the implementation of the algorithm (the loop 
stride) to access data in different cache line for each 
thread 

Or 

 Data Structure: 

 add some “padding” to a data structure or arrays ( just 
enough padding generally less than cache line size)  so 
that threads access data from different cache lines.  

44 



Summary 

 Multicores are common multiprocessors nowadays 

 Offer computing resources to improve throughput by 
process and thread level parallelism in addition to ILP 

 Dedicated on-chip caches and shared lower level caches 

 Key issues 

 Cache coherence 

- Popular protocol:  snooping invalidation 

 False-sharing 

 

 

45 



Example: True v. False Sharing v. Hit? 

Time P1 P2 True, False, Hit? Why? 

1 Write x1 

2 Read x2 

3 Write x1 

4 Write x2 

5 Read x2 

46 

 Assume x1 and x2 in same cache block.  

  P1 and P2 both read x1 and x2 before.   

True miss; invalidate x1 in P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

True miss; invalidate x2 in P1 



Aside: Interconnection Networks 

Network topologies 

 Arrangements of processors, switches, and links 

Bus Ring 

2D Mesh 

N-cube (N = 3) 

Fully connected 

47 



Aside: Multistage Networks 

48 



Aside: Network Characteristics 

 Performance 

 Latency per message (unloaded network) 

 Throughput 

- Link bandwidth 

- Total network bandwidth 

- Bisection bandwidth 

 Congestion delays (depending on traffic) 

 Cost 

 Power 

 Routability in silicon 

49 



Next: Exploit TLP on Multicores 

 Basic idea: Processor resources are expensive and 
should not be left idle 

 Long memory latency to memory on cache miss? 

 Hardware switches threads to bring in other useful work 
while waiting for cache miss 

 Cost of thread context switch must be much less than 
cache miss latency 

 Put in redundant hardware so don’t have to save context 
on every thread switch: 

 PC, Registers, L1 caches? 

 Attractive for apps with abundant TLP 

 Commercial multi-user workloads 

 

 

50 



51 

struct foo { 

    int x; 

    int y;  

}; 

 

static struct foo f; 

 

/* The two following functions are running concurrentlyby two threads: */ 

 

int sum_a(void) { 

    int s = 0; 

    int i; 

    for (i = 0; i < 1000000; ++i) 

        s += f.x; 

    return s; 

} 

 

void inc_b(void) { 

    int i; 

    for (i = 0; i < 1000000; ++i) 

        ++f.y; 

} 


