
CS3350B
 Computer Architecture

Winter 2015

Lecture 7.2: Multicore TLP (1)

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 4th or 5th edition, 2011]

0

http://www.cse.psu.edu/~

Review: Multiprocessor Systems (MIMD)

 Multiprocessor (Multiple Instruction Multiple Data):
a computer system with at least 2 processors

 Deliver high throughput for independent jobs via job-level parallelism
on top of ILP

 Improve the run time of a single program that has been specially
crafted to run on a multiprocessor - a parallel processing program

Now Use term core for processor (“Multicore”)

because “Multiprocessor Microprocessor” too redundant

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

Review

 Sequential software is slow software

 SIMD and MIMD only path to higher performance

 Multiprocessor (Multicore) uses Shared Memory (single
address space) (SMP)

 Cache coherency implements shared memory even with
multiple copies in multiple caches

 False sharing a concern

 MESI Protocol ensures cache consistency and has
optimizations for common cases.

2

Multiprocessors and You

 Only path to performance is parallelism

 Clock rates flat or declining

 SIMD: 2X width every 3-4 years

- 128b wide now, 256b 2011, 512b in 2014?, 1024b in
2018?

- Advanced Vector Extensions are 256-bits wide!

 MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …

 A key challenge is to craft parallel programs that have
high performance on multiprocessors as the number of
processors increase – i.e., that scale

 Scheduling, load balancing, time for synchronization,
overhead for communication

Example: Sum Reduction

Sum 100,000 numbers on 100 processor SMP

 Each processor has ID: 0 ≤ Pn ≤ 99

 Phase I:
Partition 1000 numbers per processor;
Initial summation on each processor

 sum[Pn] = 0; // 0 ≤ Pn ≤ 99
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

Phase II: Add these partial sums

 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

4

Example: Sum Reduction

5

Second Phase:

After each processor has

computed its “local” sum

This code runs simultaneously

on each core

half = 100;

repeat

 synch();

 /*Proc 0 sums extra element if there is one */

 if (half%2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 half = half/2; /* dividing line on who sums */

 if (Pn < half)

 sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

P0

P0 P1 P2 P3 P4

half = 10

half = 5

P1 half = 2

P0
half = 1

6

Threads

 thread of execution: smallest unit of processing scheduled
by operating system

 Threads have their own state or context:

 Program counter, Register file, Stack pointer,

 Threads share a memory address space

 Note: A “process” is a heavier-weight construct, which has
its own address space. A process typically contains one or
more threads.

 Not to be confused with a processor, which is a physical device
(i.e., a core)

7

Memory Model for Multi-threading

8

CAN BE SPECIFIED IN A LANGUAGE WITH MIMD SUPPORT –

such as OpenMP and CilkPlus

Process

Multithreading

 On a single processor, multithreading occurs by time-
division multiplexing:

 Processor switched between different threads

- may be “pre-emptive” or “non pre-emptive”

 Context switching happens frequently enough that user
perceives threads as running at the same time

 On a multiprocessor, threads run at the same time, with
each processor running a thread

9

Multithreading vs. Multicore

 Basic idea: Processor resources are expensive and
should not be left idle

 For example: Long latency to memory on cache miss?

 Hardware switches threads to bring in other useful work
while waiting for cache miss

 Cost of thread context switch must be much less than
cache miss latency

 Put in redundant hardware so don’t have to save context
on every thread switch:

 PC, Registers, …

 Attractive for applications with abundant TLP

10

Data Races and Synchronization

 Two memory accesses form a data race if from different
threads, to same location, and at least one is a write, and
they occur one after another

 If there is a data race, result of program can vary
depending on chance (which thread ran first?)

 Avoid data races by synchronizing writing and reading
to get deterministic behavior

 Synchronization done by user-level routines that rely on
hardware synchronization instructions

11

12

Question: Consider the following code

when executed concurrently by two threads.

What possible values can result in *($s0)?

 # *($s0) = 100

 lw $t0,0($s0)

 addi $t0,$t0,1

 sw $t0,0($s0)

101 or 102 ☐

100, 101, or 102 ☐

100 or 101 ☐

☐

Lock and Unlock Synchronization

 Lock used to create region
(critical section) where only
one thread can operate

 Given shared memory, use
memory location as
synchronization point: lock,
semaphore or mutex

 Thread reads lock to see if it
must wait, or OK to go into
critical section (and set to
locked)

0 => lock is free / open /
unlocked / lock off

1 => lock is set / closed /
locked / lock on

Set the lock

Critical section
(only one thread
gets to execute
this section of
code at a time)

e.g., change
shared variables

Unset the lock

13

Possible Lock Implementation

 Lock (a.k.a. busy wait)

Get_lock: # $s0 -> addr of lock

 addiu $t1,$zero,1 # t1 = Locked value

Loop: lw $t0,0($s0) # load lock

 bne $t0,$zero,Loop # loop if locked

Lock: sw $t1,0($s0) # Unlocked, so lock

 Unlock

Unlock:

 sw $zero,0($s0)

 Any problems with this?

14

Possible Lock Problem

Thread 1

 addiu $t1,$zero,1

Loop: lw $t0,0($s0)

 bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

Thread 2

 addiu $t1,$zero,1

Loop: lw $t0,0($s0)

 bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

15

Time

Both threads think they have set the lock!
Exclusive access not guaranteed!

Hardware-supported Synchronization

 Hardware support required to prevent interloper (either
thread on other core or thread on same core) from
changing the value

 Atomic read/write memory operation

 No other access to the location allowed between the read
and write

 Could be a single instruction

 e.g., atomic swap of register ↔ memory

 or an atomic pair of instructions

16

Synchronization in MIPS

 Load linked: ll rt, off(rs)

 Load rt with the contents at Mem(off+rs) and reserves the
memory address off+rs by storing it in a special link register
(Rlink)

 Store conditional: sc rt, off(rs)

 Check if the reservation of the memory address is valid in the
link register. If so, the contents of rt is written to
Mem(off+rs) and rt is set to 1; otherwise no memory store
is performed and 0 is written into rt.

 Returns 1 (success) if location has not changed since the ll
 Returns 0 (failure) if location has changed

 Note that sc clobbers the register value being stored (rt) !

 Need to have a copy elsewhere if you plan on repeating on failure or
using value later

17

Synchronization in MIPS Example

Atomic swap (to test/set lock variable)

 Exchange contents of register and memory:
$s4 ↔ Mem($s1)

try: add $t0,$zero,$s4 #copy value

 ll $t1,0($s1) #load linked

 sc $t0,0($s1) #store conditional

 beq $t0,$zero,try #loop if sc fails

 add $s4,$zero,$t1 #load value in $s4

18

sc would fail if another thread executes sc here

Test-and-Set

 In a single atomic operation:

 Test to see if a memory location is
set (contains a 1)

 Set it (to 1) if it isn’t (it contained a
zero when tested)

 Otherwise indicate that the Set failed,
so the program can try again

 While accessing, no other instruction
can modify the memory location,
including other Test-and-Set
instructions

 Useful for implementing lock operations

19

Test-and-Set in MIPS

 Single atomic operation

 Example: MIPS sequence for
implementing a T&S at ($s1)

Try: addiu $t0,$zero,1

 ll $t1,0($s1)

 bne $t1,$zero,Try

 sc $t0,0($s1)

 beq $t0,$zero,Try

Locked:

 critical section

 sw $zero,0($s1)

20

Summary

 Sequential software is slow software

 SIMD and MIMD only path to higher performance

 Multiprocessor (Multicore) uses Shared Memory
(single address space)

 Cache coherency implements shared memory even
with multiple copies in multiple caches

 False sharing a concern

 Synchronization via hardware primitives:

 MIPS does it with Load Linked + Store Conditional

21

