
Multicore programming in CilkPlus

Marc Moreno Maza

University of Western Ontario, Canada

CS3350 March 16, 2015

CilkPlus

From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became CilkPlus, see http://www.cilk.com/

CilkPlus can be freely downloaded for Linux as a branch of the gcc

compiler collection.

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

CilkPlus

Cilk++ (and Cilk Plus)

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.

CilkPlus

Fork-Join Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

CilkPlus

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

CilkPlus’s scheduler maps strands onto processors dynamically at
runtime.

CilkPlus

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

The fork-join multithreaded programming model

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)() ();

else {
int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

() ();
else {

int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.

The fork-join multithreaded programming model

The fork-join parallelism model

Figure: Instruction stream DAG.

Tp is the minimum running time on
p processors.

T1 is the sum of the number of
instructions at each vertex in
the DAG, called the work.

T∞ is the minimum running time
with infinitely many processors,
called the span. This is the
length of a path of maximum
length from the root to a leaf.

T1/T∞ : Parallelism.

Work law: Tp ≥ T1/p.

Span law: Tp ≥ T∞.

The fork-join multithreaded programming model

Graham - Brent Theorem

P = 3

In any greedy schedule, there are two types of steps:
• complete step: There are at least p strands that are ready to run.

The greedy scheduler selects any p of them and runs them.
• incomplete step: There are strictly less than p threads that are ready

to run. The greedy scheduler runs them all.

For any greedy schedule, we have Tp ≤ T1/p + T∞

The fork-join multithreaded programming model

Speedup on p processors

T1/Tp is called the speedup on p processors

A parallel program execution can have:
• linear speedup: T1/TP = Θ(p)

• superlinear speedup: T1/TP = ω(p) (not possible in this model,
though it is possible in others)

• sublinear speedup: T1/TP = o(p)

The fork-join multithreaded programming model

Overheads and burden

Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make Tp larger in practice
than T1/p + T∞.

One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a CilkPlus program with its C++ elision
3 by estimating the costs of spawning and synchronizing

CilkPlus estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation
edges along the critical path.

The fork-join multithreaded programming model

Cilkview

Work Law
(linear

Span
Law(linear

speedup)
Measured

Burdened

Measured
speedup

Burdened
parallelism

— estimates Parallelismestimates
scheduling
overheads

Cilkview computes work and span to derive upper bounds on
parallel performance

Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.

The fork-join multithreaded programming model

The cilkview example from the documentation

Using cilk for to perform operations over an array in parallel:

static const int COUNT = 4;

static const int ITERATION = 1000000;

long arr[COUNT];

long do_work(long k){

long x = 15;

static const int nn = 87;

for (long i = 1; i < nn; ++i)

x = x / i + k % i;

return x;

}

int main(){

for (int j = 0; j < ITERATION; j++)

cilk_for (int i = 0; i < COUNT; i++)

arr[i] += do_work(j * i + i + j);

}

The fork-join multithreaded programming model

1) Parallelism Profile

Work : 6,480,801,250 ins

Span : 2,116,801,250 ins

Burdened span : 31,920,801,250 ins

Parallelism : 3.06

Burdened parallelism : 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span : 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00

4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06

The fork-join multithreaded programming model

A simple fix

Inverting the two for loops

int main()

{

cilk_for (int i = 0; i < COUNT; i++)

for (int j = 0; j < ITERATION; j++)

arr[i] += do_work(j * i + i + j);

}

The fork-join multithreaded programming model

1) Parallelism Profile

Work : 5,295,801,529 ins

Span : 1,326,801,107 ins

Burdened span : 1,326,830,911 ins

Parallelism : 3.99

Burdened parallelism : 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99

The fork-join multithreaded programming model

Timing

#cores = 1 #cores = 2 #cores = 4

version timing(s) timing(s) speedup timing(s) speedup

original 7.719 9.611 0.803 10.758 0.718
improved 7.471 3.724 2.006 1.888 3.957

	CilkPlus
	The fork-join multithreaded programming model

