
CS3350B Computer Architecture
Introduction

Marc Moreno Maza

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html
Department of Computer Science

University of Western Ontario, Canada

Thursday January 5, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Konrad Zuse’s Z3 electro-mechanical computer (1941, Germany).
Turing complete, though conditional jumps were missing.

Colossus (UK, 1941) was the world’s first totally electronic
programmable computing device. But not Turing complete.

Harvard Mark I – IBM ASCC (1944, US). Electro-mechanical
computer (no conditional jumps and not Turing complete). It
could store 72 numbers, each 23 decimal digits long. It could do
three additions or subtractions in a second. A multiplication took
six seconds, a division took 15.3 seconds, and a logarithm or a
trigonometric function took over one minute. A loop was
accomplished by joining the end of the paper tape containing the
program back to the beginning of the tape (literally creating a
loop).

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete,
digital computer capable of being reprogrammed and was running
at 5,000 cycles per second for operations on the 10-digit numbers.

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).

The Pentium Family.

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

L1 Data Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way32 KB 64 bytes 3 cycles 8‐way

L1 Instruction Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way

L2 CacheL2 Cache
Size Line Size Latency Associativty
6 MB 64 bytes 14 cycles 24‐way

Typical cache specifications of a multicore in 2008.

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Once upon a time, every thing was slow in a computer . . .

Classes of Computers

▸ Personal computers
▸ General purpose, variety of software
▸ Subject to cost/performance trade-off

▸ Server computers
▸ Network based
▸ High capacity, performance, reliability
▸ Range from small servers to building sized

▸ Supercomputers
▸ High-end scientific and engineering calculations
▸ Highest capability but represent a small fraction of the overall
computer market

▸ Embedded computers
▸ Hidden as components of systems
▸ Stringent power/performance/cost constraints

Components of a computer

▸ Same components for all kinds of computer
▸ desktop, server, embedded

Below your program

▸ Application software
▸ Written in a high-level language

▸ System software
▸ Compiler: translates HLL code to
machine code

▸ Operating system: service code
▸ Handling input/output
▸ Managing memory and storage
▸ Scheduling tasks & sharing
resources

▸ Hardware
▸ Processor, memory, I/O
controllers

Levels of program code

▸ High-level language
▸ Level of abstraction closer
to problem domain

▸ Provides for productivity
and portability

▸ Assembly language
▸ Textual representation of
instructions

▸ Hardware representation
▸ Binary digits (bits)
▸ Encoded instructions and
data

Old-school machine structures (layers of abstraction)

New-school machine structures
Software Hardware
▸ Parallel Requests

Assigned to computer
e.g., Search “Katz”

▸ Parallel Threads
Assigned to core
e.g., Look-up, Ads

▸ Parallel Instructions
>1 instruction @ one
time
e.g., 5 pipelined
instructions

▸ Parallel Data
>1 data item @ one
time
e.g., Add of 4 pairs of
words

▸ Hardware descriptions
All gates working in
parallel at same time

Why do computers become so complicated?

Pursuing performance!
▸ Eight great ideas

▸ Use abstraction to simplify design
▸ Design for Moore’s Law
▸ Make the common case fast
▸ Performance via parallelism
▸ Performance via pipelining
▸ Performance via prediction
▸ Hierarchy of memories
▸ Dependability via redundancy

Great Idea #1: Abstraction

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

Anything can be

represented as a

number, i.e., data or

instructions

0000 1001 1100 0110 1010 1111
0101 1000
1010 1111 0101 1000 0000 1001
1100 0110
1100 0110 1010 1111 0101 1000
0000 1001
0101 1000 0000 1001 1100 0110
1010 1111

Great idea #2: Moore’s Law

Great idea #4: Performance via parallelism

Great idea #5: Performance via pipelining

Caveat: Amdahl’s Law

Great idea #7: Memory hierarchy (principle of locality)

Great Idea #8: Dependability via redundancy

▸ Redundancy so that a failing piece doesn’t make the whole
system fail

▸ Increasing transistor density reduces the cost of redundancy

Great Idea #8: Dependability via redundancy

Applies to everything from data centers to storage to memory to
instructors
▸ Redundant data centers so that can lose 1 datacenter but
Internet service stays online

▸ Redundant disks so that can lose 1 disk but not lose data
(Redundant Arrays of Independent Disks/RAID)

▸ Redundant memory bits of so that can lose 1 bit but no data
(Error Correcting Code/ECC Memory)

Understanding performance

▸ Algorithm
Determines number of operations executed

▸ Programming language, compiler, architecture
Determine number of machine instructions executed per
operation

▸ Processor and memory system
Determine how fast instructions are executed

▸ I/O system (including OS)
Determines how fast I/O operations are executed

What you will learn

▸ How programs are translated into the machine language, and
▸ how the hardware executes them
▸ The hardware/software interface
▸ What determines program performance, and
▸ how it can be improved
▸ How hardware designers improve performance
▸ What is parallel processing

Course Topics

1. Introduction
▸ Machine structures: layers of abstraction
▸ Eight great ideas

2. Performance Metrics I
▸ CPU performance
▸ perf, a profiling tool

3. Memory Hierarchy
▸ The principle of locality
▸ DRAM and cache
▸ Cache misses
▸ Performance metrics II: memory performance and profiling
▸ Cache design and cache mapping techniques

4. MIPS Instruction Set Architecture (ISA)
▸ MIPS number representation
▸ MIPS instruction format, addressing modes and procedures
▸ SPIM assembler and simulator

Course Topics (cont’d)
5. Introduction to Logic Circuit Design

▸ Switches and transistors
▸ State circuits
▸ Combinational logic circuits
▸ Combinational logic blocks
▸ MIPS single cycle and multiple cycle CPU data-path and
control

6. Instruction Level Parallelism
▸ Pipelining the MIPS ISA
▸ Pipelining hazards and solutions
▸ Multiple issue processors
▸ Loop unrolling, SSE

7. Multicore Architecture
▸ Multicore organization
▸ Memory consistency and cache coherence
▸ Thread level parallelism

8. GPU Architecture
▸ Memory model
▸ Execution model: scheduling and synchronization

Student evaluation

▸ Four assignments, each worth 10% of the final mark
▸ Assignment 1 (CPU performance and memory hierarchy), due
Friday, Jan. 27

▸ Assignment 2 (MIPS and logic circuits), due Friday, Feb. 17
▸ Assignment 3 (Circuits and data-path), due Friday, March 10,
▸ Assignment 4 (ILP and multicore), due Friday, March 31.

▸ Four quizzes (key concepts, 30-minute in class), each worth
5% of the final mark

▸ Quiz 1 (CPU/memory performance metrics and hierarchical
memory), Thursday, Jan. 26

▸ Quiz 2 (MIPS), Thursday, Feb. 16
▸ Quiz 3 (Circuits and data-path), Thursday, March 9
▸ Quiz 4 (ILP and multicore), Thursday, March 30

▸ One final exam (covering all the course contents), worth 40%
of the final mark

Recommended (but not required) textbook
Patterson & Hennessy (2011), "Computer Organization and
Design: The Hardware/Software Interface“, revised 4th edition or
5th edition. ISBN: 978-0-12-374750-1

Instructor: Marc Moreno Maza
▸ Email: moreno@csd.uwo.ca
▸ Office room: MC327
▸ Office hours:

Tuesdays 2:30pm - 3:15pm
Thursdays 1:30pm - 3:15pm
Otherwise by appointment

Teaching Assistants: Davood Mohajerani and Egor Chesakov
▸ Emails: dmohajer@uwo.ca and echesako@uwo.ca
▸ Office room: MC327
▸ Office hours:

Mondays 1:30pm - 3:30pm
Wednesdays 1:30pm - 3:30pm

moreno@csd.uwo.ca
dmohajer@uwo.ca
echesako@uwo.ca

Acknowledgements

The lecturing slides of this course are adapted from the slides
accompanied with the text book and the teaching materials posted
on the www by other instructors who are teaching Computer
Architecture courses.

www

