CS3350B Computer Architecture

Winter 2015

Lecture 5.3: Representations of Combinational Logic Circuits

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on
Computer Organization and Design,
Patterson \& Hennessy, $5^{\text {th }}$ edition, 2013]

Truth Tables

TT Example \#1: 1 iff one (not both) $a, b=1$

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

TT Example \#2: 2-bit adder

TT Example \#3: 32-bit unsigned adder

A	B	C		
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$		
$000 \ldots 0$	$000 \ldots 1$	$000 \ldots 01$		
.	.	.		How
:---:				
.				

TT Example \#4: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

AND

ab	c
00	0
01	0
10	0
11	1
ab	c
00	0
01	1
10	1
11	1

NOT

a	b
0	1
1	0

And vs. Or review

AND Gate

Symbol

Definition

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates (2/2)

2-input gates extend to n-inputs

- N -input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1 s at its input is odd \Rightarrow

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table \Rightarrow Gates (e.g., majority circ.)

Truth Table \Rightarrow Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Boolean Algebra

- George Boole, $19^{\text {th }}$ Century mathematician
- Developed a mathematical system (algebra) involving logic
- later known as "Boolean Algebra"

- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA + means OR, • means AND, $\overline{\mathbf{x}}$ means NOT

Boolean Algebra (e.g., for majority fun.)

$$
\begin{gathered}
y=a \cdot b+a \cdot c+b \cdot c \\
y=a b+a c+b c
\end{gathered}
$$

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output	PS1
00	0	00	0	PS
00	1	01	0	
01	1	10	0	or equivalently...
10	0	10	0	
10	1	00	1	PS 1

BA: Circuit \& Algebraic Simplification

simplified circuit

Laws of Boolean Algebra

$$
\begin{array}{ccl}
x \cdot \bar{x}=0 & x+\bar{x}=1 & \text { complementarity } \\
x \cdot 0=0 & x+1=1 & \text { laws of 0's and 1's } \\
x \cdot 1=x & x+0=x & \text { identities } \\
x \cdot x=x & x+x=x & \text { idempotent law } \\
x \cdot y=y \cdot x & x+y=y+x & \text { commutativity } \\
(x y) z=x(y z) & (x+y)+z=x+(y+z) & \text { associativity } \\
x(y+z)=x y+x z & x+y z=(x+y)(x+z) & \text { distribution } \\
x y+x=x & (x+y) x=x & \text { uniting theorem } \\
\bar{x} y+x=x+y & (\bar{x}+y) x=x y & \text { uniting theorem v.2 } \\
\overline{x \cdot y}=\bar{x}+\bar{y} & \overline{x+y}=\bar{x} \cdot \bar{y} & \text { DeMorgan's Law }
\end{array}
$$

Boolean Algebraic Simplification Example

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of 1's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical forms (1/2)

Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- Use this table and techniques we learned to transform from 1 to another

