CS3350B Computer Architecture Winter 2015

Lecture 5.3: Representations of Combinational Logic Circuits

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on *Computer Organization and Design*, Patterson & Hennessy, 5th edition, 2013]

Truth Tables

a	b	c	d	у
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
0	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

a	b	У
0	0	0
0	1	1
1	0	1
1	1	0

TT Example #2: 2-bit adder

А	В	C	
$a_1 a_0$	b_1b_0	$c_2 c_1 c_0$	
00	00	000	
00	01	001	
00	10	010	
00	11	011	
01	00	001	
01	01	010	
01	10	011	How
01	11	100	
10	00	010	Man
10	01	011	Row
10	10	100	
10	11	101	
11	00	011	
11	01	100	
11	10	101	
11	11	110	

У **/S**?

TT Example #4: 3-input majority circuit

a	b	C	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

And vs. Or review

AND Gate

Definition

Logic Gates (2/2)

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒

Truth Table ⇒ Gates (e.g., majority circ.)

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic

- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

+ means OR, • means AND, x means NOT

Boolean Algebra (e.g., for majority fun.)

 $y = a \cdot b + a \cdot c + b \cdot c$ y = ab + ac + bc

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$$\mathbf{y} = \mathbf{PS}_1 \cdot \mathbf{PS}_0 \cdot \mathbf{INPUT}$$

BA: Circuit & Algebraic Simplification

$$y = ((ab) + a) + c$$

$$\downarrow$$

$$= ab + a + c$$

$$= a(b + 1) + c$$

$$= a(1) + c$$

$$\downarrow$$

$$a + c$$

$$\downarrow$$

original circuit

equation derived from original circuit

algebraic simplification

simplified circuit

Laws of Boolean Algebra

$x \cdot \overline{x} = 0$	$x + \overline{x} = 1$
$x \cdot 0 = 0$	x + 1 = 1
$x \cdot 1 = x$	x + 0 = x
$x \cdot x = x$	x + x = x
$x \cdot y = y \cdot x$	x + y = y + x
(xy)z = x(yz)	(x+y) + z = x + (y+z)
x(y+z) = xy + xz	x + yz = (x + y)(x + z)
xy + x = x	(x+y)x = x
$\overline{x}y + x = x + y$	$(\overline{x} + y)x = xy$
$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{x+y} = \overline{x} \cdot \overline{y}$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2 DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$
= $a(1) + c$
= $a + c$

distribution, identity law of 1's identity

Canonical forms (1/2)

Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad distribution$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1) \quad complementarity$$

$$= \overline{a}\overline{b} + a\overline{c} \quad identity$$

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- Use this table and techniques we learned to transform from 1 to another

