CS3350B Computer Architecture Winter 2015

Lecture 5.4: Combinational Logic Blocks

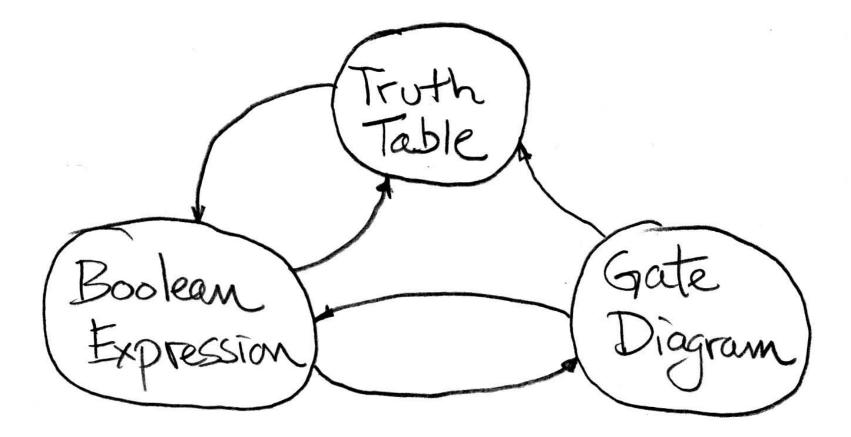
Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on *Computer Organization and Design*, Patterson & Hennessy, 5th edition, 2013]

Review

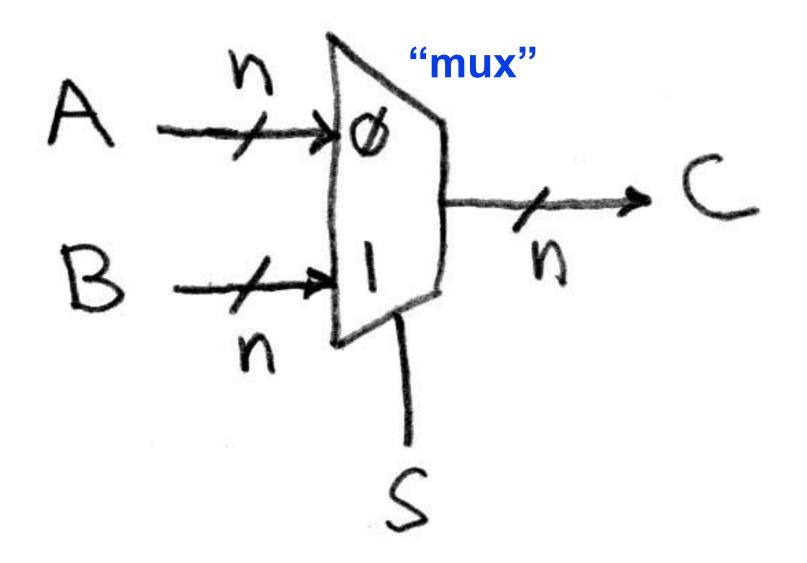
Use this table and techniques we learned to transform from 1 to another



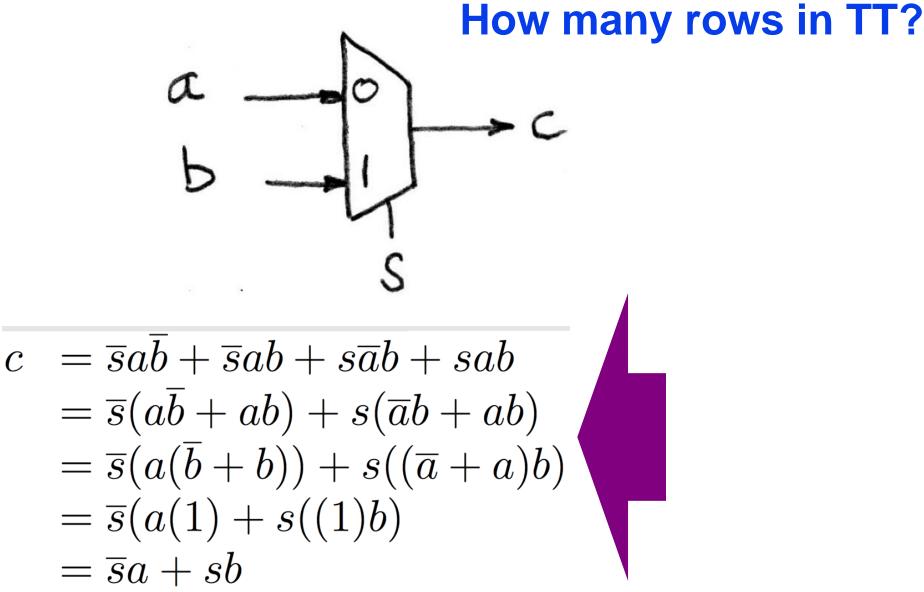
Plan

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

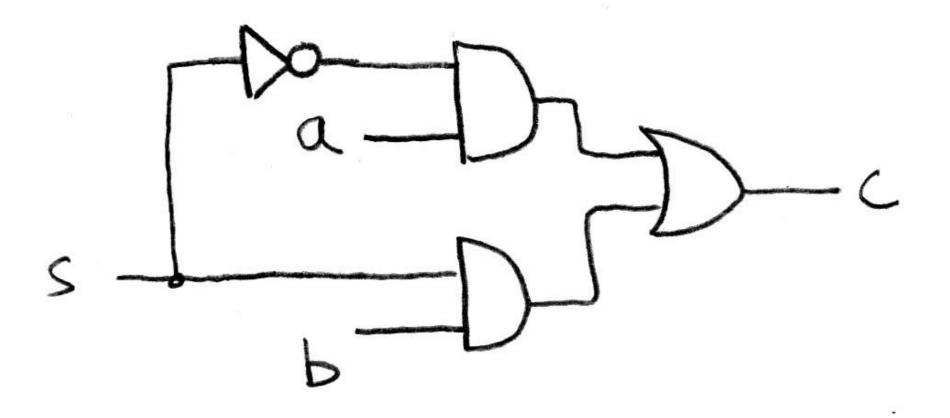


N instances of 1-bit-wide mux



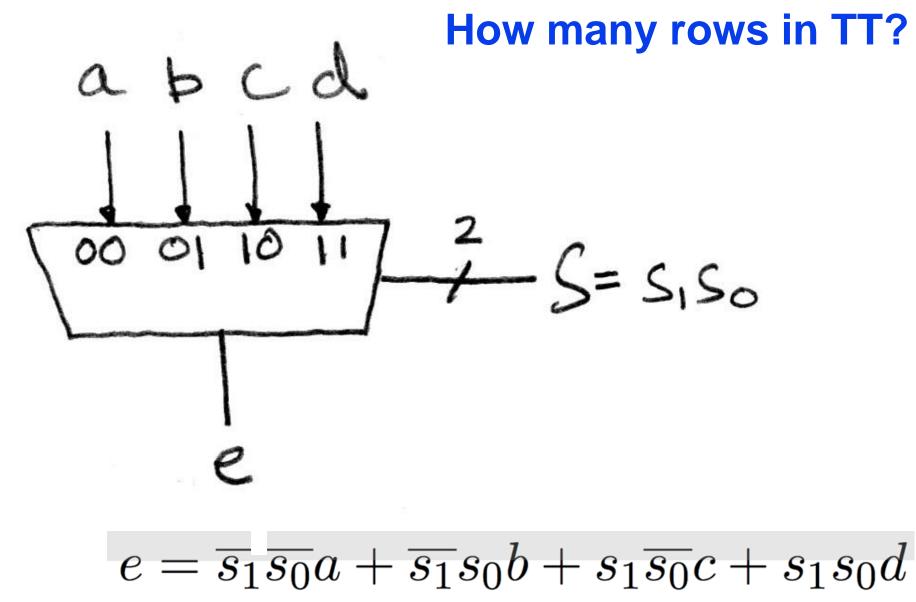
How do we build a 1-bit-wide mux?

 $\overline{s}a + sb$

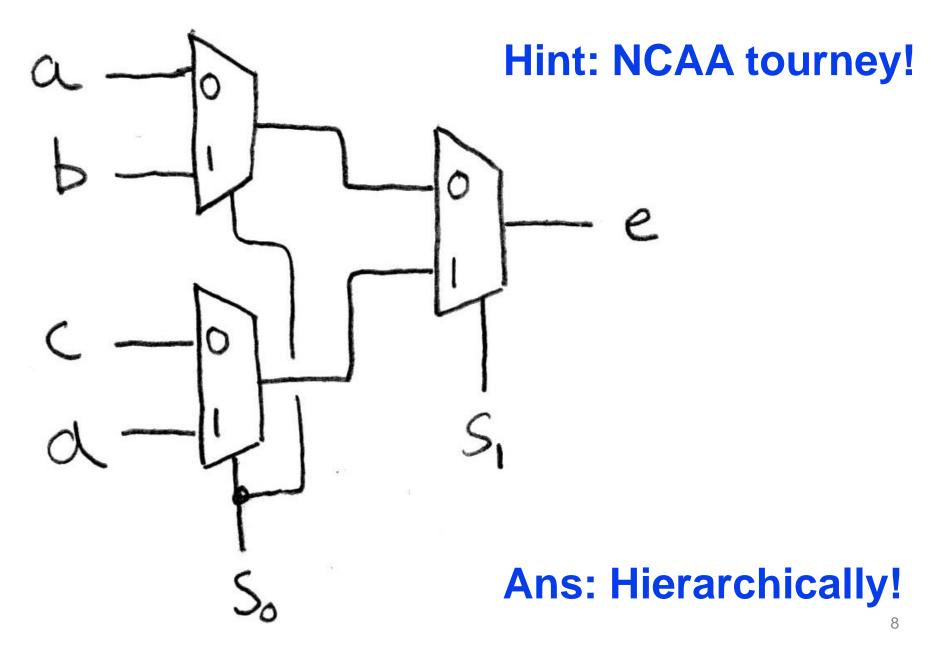


6

4-to-1 Multiplexor?

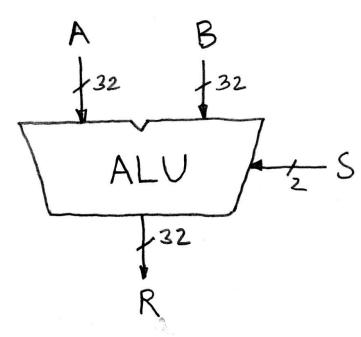


Is there any other way to do it?



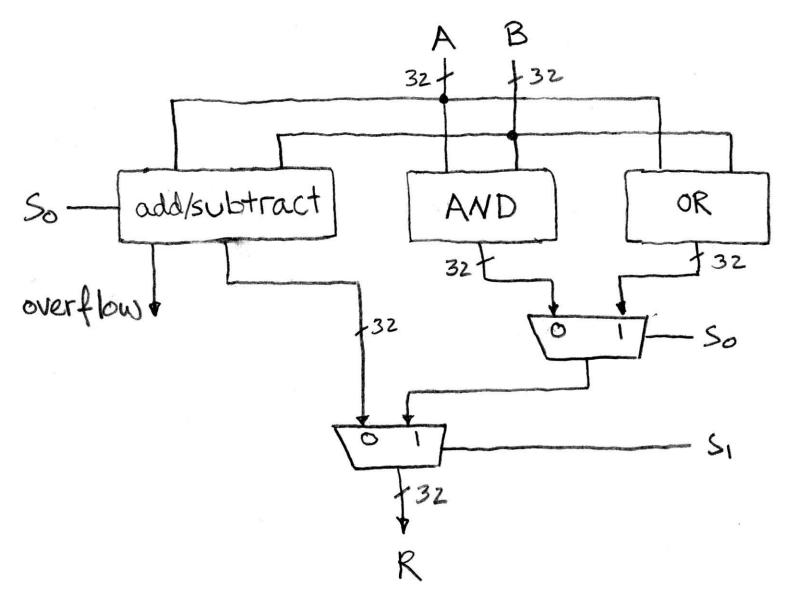
Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR



when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU

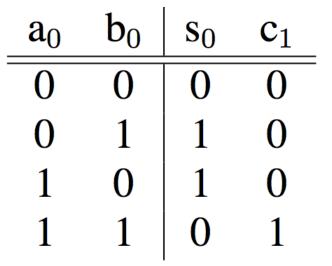


Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter – One-bit adder LSB...

	a_3	a_2	a_1	a_0
+	b_3	b_2	b_1	b_0
·	s_3	s_2	s_1	s ₀

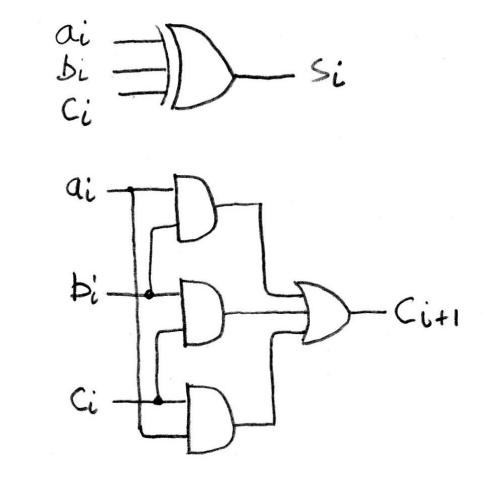


$$s_0 = c_1 = c_1$$

Adder/Subtracter – One-bit adder (1/2)...

						\mathbf{a}_i	\mathbf{b}_i	\mathbf{c}_i	\mathbf{s}_i	\mathbf{c}_{i+1}
						0	0	0	0	0
	0	0				0	0	1	1	0
	a_3		1	a_0		0	1		1	0
+	b_3	b_2	$ b_1 $	b_0		0	1	1	0	1
	S ₃	\mathbf{s}_2	S ₁	S ₀	-	1	0	0	1	0
	0	2		j		1	0	1	0	1
						1	1	0	0	1
						1	1	1	1	1
									I	

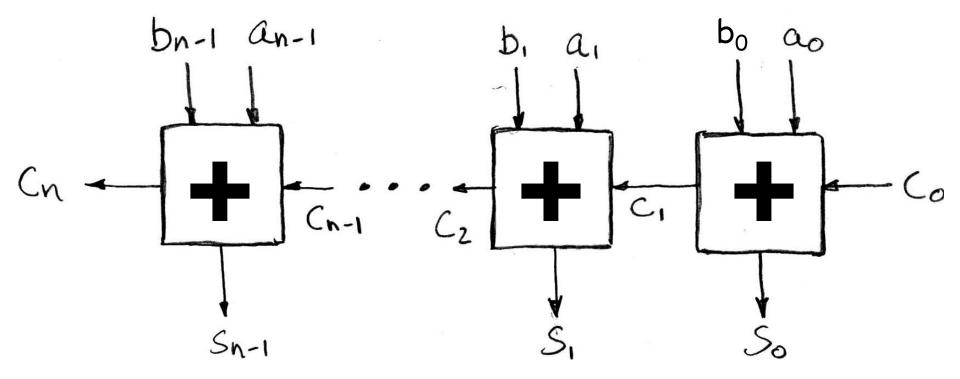
Adder/Subtracter – One-bit adder (2/2)...



$$s_i = \operatorname{XOR}(a_i, b_i, c_i)$$

$$c_{i+1} = \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$$

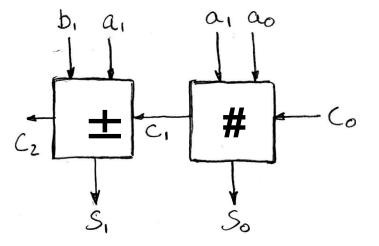
N 1-bit adders \Rightarrow **1 N-bit adder**



What about overflow? Overflow = c_n ?

What about overflow?

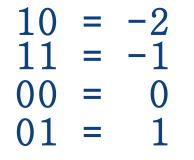
- Consider a 2-bit signed # & overflow:
 - $\cdot 10 = -2 + -2$ or -1 $\cdot 11 = -1 + -2$ only
 - $\bullet 00 = 0$ NOTHING!
 - $\bullet 01 = 1 + 1$ only
- Highest adder

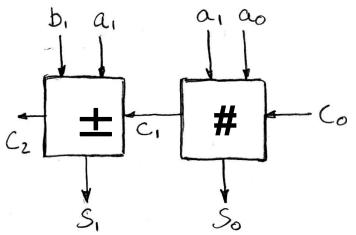


- $C_1 = Carry-in = C_{in}, C_2 = Carry-out = C_{out}$
- No C_{out} or $C_{in} \Rightarrow$ NO overflow!
- What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!
- C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow! C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow! op?

What about overflow?

Consider a 2-bit signed # & overflow:



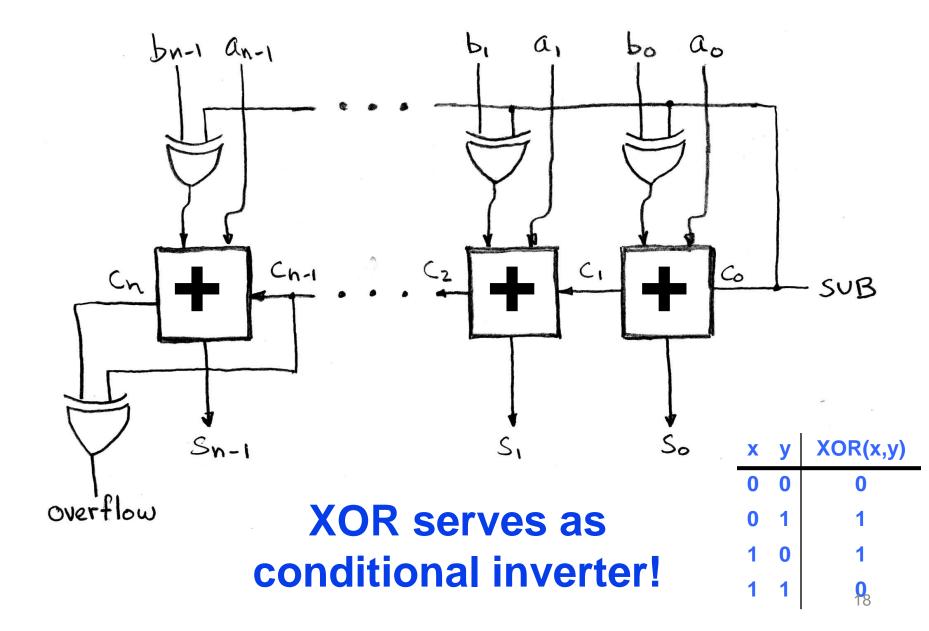


Overflows when...

• C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow! • C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

overflow = $c_n \operatorname{XOR} c_{n-1}$

Extremely Clever Subtractor



"And In conclusion..."

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter