
CS3350B
 Computer Architecture

Winter 2015

Lecture 5.5: Single-Cycle CPU Datapath Design

Marc Moreno Maza
www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2013]

http://www.cse.psu.edu/~

Review

• Use muxes to select among inputs

– S control bits selects from 2S inputs

– Each input can be n-bits wide, indep of S

• Can implement muxes hierarchically

• ALU can be implemented using a mux

– Coupled with basic block elements

• N-bit adder-subtractor done using N 1-

bit adders with XOR gates on input

– XOR serves as conditional inverter

Plan

• Stages of the Datapath

• Datapath Instruction Walkthroughs

• Datapath Design

Five Components of a Computer

 Processor

Computer

Control

Datapath

Memory
(passive)

(where

programs,
data live

when
running)

Devices

Input

Output

Keyboard,

Mouse

Display,

Printer

Disk

(where
programs,
data live
when not
running)

The CPU

• Processor (CPU): the active part of the computer
that does all the work (data manipulation and
decision-making)

• Datapath: portion of the processor that contains
hardware necessary to perform operations required
by the processor (the brawn)

• Control: portion of the processor (also in hardware)
that tells the datapath what needs to be done (the
brain)

Stages of the Datapath : Overview

• Problem: a single, atomic block that “executes an
instruction” (performs all necessary operations
beginning with fetching the instruction) would be too
bulky and inefficient

• Solution: break up the process of “executing an
instruction” into stages, and then connect the stages
to create the whole datapath

– smaller stages are easier to design

– easy to optimize (change) one stage without
touching the others

Five Stages of the Datapath

• Stage 1: Instruction Fetch

• Stage 2: Instruction Decode

• Stage 3: ALU (Arithmetic-Logic Unit)

• Stage 4: Memory Access

• Stage 5: Register Write

Stages of the Datapath (1/5)

• There is a wide variety of MIPS instructions: so
what general steps do they have in common?

• Stage 1: Instruction Fetch

– no matter what the instruction, the 32-bit
instruction word must first be fetched from
memory (the cache-memory hierarchy)

– also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

Stages of the Datapath (2/5)

• Stage 2: Instruction Decode

– upon fetching the instruction, we next gather data
from the fields (decode all necessary instruction
data)

– first, read the opcode to determine instruction

type and field lengths

– second, read in data from all necessary registers
• for add , read two registers

• for addi , read one register

• for jal , no reads necessary

• Stage 3: ALU (Arithmetic-Logic Unit)

– the real work of most instructions is done here:
arithmetic (+, -, *, /), shifting, logic (&, |),
comparisons (slt)

– what about loads and stores?
• lw $t0, 40($t1)

• the address we are accessing in memory = the value in
$t1 PLUS the value 40

• so we do this addition in this stage

Stages of the Datapath (3/5)

Stages of the Datapath (4/5)

• Stage 4: Memory Access

– actually only the load and store instructions do
anything during this stage; the others remain idle
during this stage or skip it all together

– since these instructions have a unique step, we
need this extra stage to account for them

– as a result of the cache system, this stage is
expected to be fast

Stages of the Datapath (5/5)

• Stage 5: Register Write

– most instructions write the result of some
computation into a register

– examples: arithmetic, logical, shifts, loads, slt

– what about stores, branches, jumps?

• don’t write anything into a register at the end

• these remain idle during this fifth stage or skip it all
together

Generic Steps of Datapath

in
s
tr

u
c
ti
o

n

m
e
m

o
ry

+4

rt

rs

rd

re
g

is
te

rs

ALU

D
a

ta

m
e

m
o

ry

imm

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Register
 Write

P
C

• add $r3,$r1,$r2 # r3 = r1+r2

– Stage 1: fetch this instruction, increment PC

– Stage 2: decode to determine it is an add ,
then read registers $r1 and $r2

– Stage 3: add the two values retrieved in Stage 2

– Stage 4: idle (nothing to write to memory)

– Stage 5: write result of Stage 3 into register $r3

Datapath Walkthroughs (1/3)

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4
re

g
is

te
rs

ALU

D
a

ta

m
e

m
o

ry

imm

2

1

3

ad
d

 r
3

, r
1

, r
2

reg[1]+
reg[2]

reg[2]

reg[1]

Example: add Instruction
P

C

• slti $r3,$r1,17
if (r1 <17) r3 = 1 else r3 = 0

– Stage 1: fetch this instruction, increment PC
– Stage 2: decode to determine it is an slti ,

then read register $r1

– Stage 3: compare value retrieved in Stage 2
with the integer 17

– Stage 4: idle

– Stage 5: write the result of Stage 3 (1 if reg source was less
than signed immediate, 0 otherwise) into register $r3

Datapath Walkthroughs (2/3)

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4
re

g
is

te
rs

ALU

D
a

ta

m
e

m
o

ry

imm

3

1

x

sl
ti

 r
3

, r
1

, 1
7

reg[1]

<17?

17

reg[1]

Example: slti Instruction
P

C

• sw $r3,17($r1)

 # Mem[r1+17]=r3

– Stage 1: fetch this instruction, increment PC

– Stage 2: decode to determine it is a sw ,
then read registers $r1 and $r3

– Stage 3: add 17 to value in register $r1

(retrieved in Stage 2) to compute address

– Stage 4: write value in register $r3 (retrieved in

Stage 2) into memory address computed in
Stage 3

– Stage 5: idle (nothing to write into a register)

Datapath Walkthroughs (3/3)

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4
re

g
is

te
rs

ALU

D
a

ta

m
e

m
o

ry

imm

3

1

x

SW
 r

3
, 1

7
(r

1
)

reg[1]
+17

17

reg[1]

M
EM

[r
1

+1
7

]<
=r

3

reg[3]

Example: sw Instruction
P

C

Why Five Stages? (1/2)

• Could we have a different number of stages?

– Yes, and other architectures do

• So why does MIPS have five if instructions
tend to idle for at least one stage?

– Five stages are the union of all the operations
needed by all the instructions.

– One instruction uses all five stages: the load

• lw $r3,17($r1)

 # r3=Mem[r1+17]

– Stage 1: fetch this instruction, increment PC

– Stage 2: decode to determine it is a lw ,
then read register $r1

– Stage 3: add 17 to value in register $r1

(retrieved in Stage 2)

– Stage 4: read value from memory address
computed in Stage 3

– Stage 5: write value read in Stage 4 into
register $r3

Why Five Stages? (2/2)

ALU

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4
re

g
is

te
rs

D
a

ta

m
e

m
o

ry

imm

3

1

x

LW
 r

3
, 1

7
(r

1
)

reg[1]
+17

17

reg[1]

M
EM

[r
1

+1
7

]

Example: lw Instruction

P
C

Exercise:

How many places in this diagram will need a
multiplexor to select one from multiple inputs?

a) 0 b) 1 c) 2 d) 3 e) 4 or more

Exercise Answer

How many places in this diagram will need a
multiplexor to select one from multiple inputs

a) 0 b) 1 c) 2 d) 3 e) 4 or more

Datapath and Control

• Datapath based on data transfers required to perform
instructions

• Controller causes the right transfers to happen

P
C

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4

rt

rs

rd

re
g

is
te

rs

D
a

ta

m
e

m
o

ry

imm

ALU

Controller

opcode, funct

What Hardware Is Needed? (1/2)

• PC: a register that keeps track of address of
the next instruction to be fetched

• General Purpose Registers

– Used in Stages 2 (Read) and 5 (Write)

– MIPS has 32 of these

• Memory

– Used in Stages 1 (Fetch) and 4 (R/W)

– Caches makes these stages as fast as the others
(on average, otherwise multicycle stall)

What Hardware Is Needed? (2/2)

• ALU
– Used in Stage 3
– Performs all necessary functions: arithmetic, logicals,

etc.

• Miscellaneous Registers
– One stage per clock cycle: Registers inserted between

stages to hold intermediate data and control signals as
they travel from stage to stage

– Note: Register is a general purpose term meaning
something that stores bits. Realize that not all
registers are in the “register file”

CPU Clocking (1/2)

• For each instruction, how do we control the flow of
information though the datapath?

• Single Cycle CPU: All stages of an instruction
completed within one long clock cycle

– Clock cycle sufficiently long to allow each instruction to
complete all stages without interruption within one cycle

1. Instruction

Fetch

2. Decode/

 Register

Read

3. Execute 4. Memory
5. Reg.

 Write

CPU Clocking (2/2)

• Alternative multiple-cycle CPU: only one stage of instruction
per clock cycle

– Clock is made as long as the slowest stage

– Several significant advantages over single cycle execution:
Unused stages in a particular instruction can be skipped
OR instructions can be pipelined (overlapped)

1. Instruction

Fetch

2. Decode/

 Register

Read

3. Execute 4. Memory 5. Register

 Write

Processor Design

• Analyze instruction set architecture (ISA) to determine
datapath requirements
– Meaning of each instruction is given by register transfers
– Datapath must include storage element for ISA registers
– Datapath must support each register transfer

• Select set of datapath components and establish
clocking methodology

• Assemble datapath components to meet requirements
• Analyze each instruction to determine sequence of

control point settings to implement the register
transfer

• Assemble the control logic to perform this sequencing

Summary

• CPU design involves Datapath, Control
– 5 Stages for MIPS Instructions

1. Instruction Fetch

2. Instruction Decode & Register Read

3. ALU (Execute)

4. Memory

5. Register Write

• Datapath timing: single long clock cycle or one
short clock cycle per stage

