
CS3350B
 Computer Architecture

Winter 2015

Lecture 7.3: Multicore TLP (2)

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 4th or 5th edition, 2011]

0

http://www.cse.psu.edu/~

Plan

 Hardware multithreading

 CilkPlus and OpenMP: simple parallel
extensions to C/C++ for high-level parallel
programming on multicores

 Parallel performance metrics and profiling tool
cilkview

1

Multithreading on A Chip

 Find a way to “hide” true data dependency stalls, cache

miss stalls, and branch stalls by finding instructions (from

other process threads) that are independent of those

stalling instructions

 Hardware multithreading – increase the utilization of

resources on a chip by allowing multiple processes

(threads) to share the functional units of a single

processor

 Processor must duplicate the state hardware for each thread – a

separate register file, PC, instruction buffer, and store buffer for

each thread

 The caches, TLBs, BHT, BTB, RUU can be shared (although the

miss rates may increase if they are not sized accordingly)

 The memory can be shared through virtual memory mechanisms

 Hardware must support efficient thread context switching

2

Types of Hardware Multithreading

 Fine-grain – switch threads on every instruction issue

 Round-robin thread interleaving (skipping stalled threads)

 Processor must be able to switch threads on every clock cycle

 Advantage – can hide throughput losses that come from both

short and long stalls

 Disadvantage – slows down the execution of an individual

thread since a thread that is ready to execute without stalls is

delayed by instructions from other threads

 Coarse-grain – switches threads only on costly stalls

(e.g., L2 cache misses)

 Advantage – thread switching doesn’t have to be essentially

free and much less likely to slow down the execution of an

individual thread

 Disadvantage – limited, due to pipeline start-up costs, in its

ability to overcome throughput loss

- Pipeline must be flushed and refilled on thread switches
3

Multithreaded Example: Sun’s Niagara (UltraSparc T2)

 Eight fine grain multithreaded single-issue, in-order
cores (no speculation, no dynamic branch prediction)

Niagara 2

Data width 64-b

Clock rate 1.4 GHz

Cache

(I/D/L2)

16K/8K/4M

Issue rate 1 issue

Pipe stages 6 stages

BHT entries None

TLB entries 64I/64D

Memory BW 60+ GB/s

Transistors ??? million

Power (max) <95 W
8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

8
-w

a
y
 M

T
 S

P
A

R
C

 p
ip

e

 Crossbar

8-way banked L2$

Memory controllers

I/O

shared

funct’s

4

Niagara Integer Pipeline

 Cores are simple (single-issue, 6 stages, no branch
prediction), small, and power-efficient

Fetch Thrd Sel Decode Execute Memory WB

I$

ITLB

Inst

bufx8

PC

logicx8

Decode

RegFile

x8

Thread

Select

Logic

ALU

Mul

Shft

Div

D$

DTLB

Stbufx8

Thrd

Sel

Mux

Thrd

Sel

Mux

Crossbar

Interface

Instr type
Cache misses
Traps & interrupts
Resource conflicts

5

Simultaneous Multithreading (SMT)

 A variation on multithreading that uses the resources of a

multiple-issue, dynamically scheduled processor

(superscalar) to exploit both ILP and TLP

 Most SS processors have more functional unit parallelism than a

single thread can effectively use

 With register renaming and dynamic scheduling, multiple

instructions from independent threads can be issued without

regard to dependencies among them

- Need separate rename tables (RUUs) for each thread or need to be

able to indicate which thread the entry belongs to

- Need the capability to commit from multiple threads in one cycle

 Intel’s Pentium 4 SMT is called hyperthreading

 Supports just two threads (doubles the architecture state)

6

1 2 1 2 3 1 2 3 1

3 4 5

4 5 6 6 2 3 4

7 8 7 4 5 5 6

9 10 11 12 8 6 7 8

7 9 10 11 12

9 10 11 12 8 9 10

13 14

13 15 16

14 15 16

1 2 1 2 1 2 1 2

3 1 2 3 3 1 2 3

4 5 6 1 2 3 1 3 4 5

7 8 1 4 5 6 6

9 10 11 12 3 2 3 4 7

4 5 7 8 3 5

1 2 3 4 5 5 6 8 6

4 5 2 3 4 9 10 11 12

6 4 5 6 7 8 7

7 6 9 10 11 12

T
im

e
 —

—
—

—
>

T
im

e
 —

—
—

—
>

Coarse-grain Fine Grain SMT

Thread A Thread B Thread C Thread D

Threading on a 4-way SS Processor Example

7

8

Microprocessor Comparison

Processor SUN T1 Opteron Pentium D IBM Power 5

Cores 8 2 2 2

Instruction issues

/ clock / core 1 3 3 4

Peak instr. issues

/ chip 8 6 6 8

Multithreading Fine-grained No SMT SMT

L1 I/D in KB per core 16/8 64/64 12K uops/16 64/32

L2 per core/shared 3 MB shared 1MB / core 1MB/ core 1.9 MB shared

Clock rate (GHz) 1.2 2.4 3.2 1.9

Transistor count (M) 300 233 230 276

Die size (mm2) 379 199 206 389

Power (W) 79 110 130 125

Summary of Hardware Multithreading

 Benefit:

 All multithreading techniques improve the utilisation of processor
resources and, hence, the performance

 If the different threads are accessing the same input data they
may be using the same regions of memory

- Cache efficiency improves in these cases

 Disadvantage:

 The perceived performance may be degraded when comparing
with a single-thread CPU

- Multiple threads interfering with each other

 The cache has to be shared among several threads so
effectively they would use a smaller cache

 Thread scheduling at hardware level adds high complexity to
processor design

- Thread state, managing priorities, OS-level information, …

9

Shared Memory Model with Explicit Thread-based Parallelism

 Shared memory process consists of multiple threads,
explicit programming model with full programmer
control over parallelization

 Pros:

 Takes advantage of shared memory, programmer need not
worry (that much) about data placement

 Programming model is “serial-like” and thus conceptually
simpler than alternatives

 Compiler directives are generally simple and easy to use

 Legacy serial code does not need to be rewritten

 Cons:

 Codes can only be run in shared memory environments!

 Compiler must support
(e.g., CilkPlus and OpenMP in gcc 4.xx)
(both are available on the machines in MC10)

10

Introduction to CilkPlus

11

Introduction to OpenMP

 API used for multi-threaded, shared memory parallelism

 Compiler Directives

 Runtime Library Routines

 Environment Variables

 Portable

 Standardized

 See
http://www.openmp.org/mp documents/OpenMP4.0.0.pdf
http://computing.llnl.gov/tutorials/openMP/

12

http://www.openmp.org/mp documents/OpenMP4.0.0.pdf
http://computing.llnl.gov/tutorials/openMP/

OpenMP Programming Model

 Fork - Join Model:

 OpenMP programs begin as single process: master
thread; Executes sequentially until the first parallel region
construct is encountered
 FORK: the master thread then creates a team of parallel threads
 Statements in program that are enclosed by the parallel region

construct are executed in parallel among the various team
threads

 JOIN: When the team threads complete the statements in the
parallel region construct, they synchronize and terminate, leaving
only the master thread

13

OpenMP Directives

14

shares iterations of a

loop across the team

each section executed

by a separate thread
serializes the execution

of a thread

OpenMP Specification

15

OpenMP Extends C with Pragmas

 Pragmas are a mechanism C provides for language
extensions

 Commonly implemented pragmas: structure packing,
symbol aliasing, floating point exception modes

 Good mechanism for OpenMP because compilers that don't
recognize a pragma are supposed to ignore them

 Runs on sequential computer even with embedded pragmas

16

Matrix Multiply in OpenMP

#pragma omp parallel for private(tmp, i, j, k)

 for(i=0; i<Ndim; i++){

 for(j=0; j<Mdim; j++){

 tmp = 0.0;

 for(k=0; k<Pdim; k++){

 tmp += A[i*Ndim+k] * B[k*Pdim+j];

 }

 C[i*Ndim+j] = tmp;

 }

 }

17

Note: Outer loop spread

across N threads; inner

loops inside a thread

Amdahl’s Law: theoretically how much speed up
you can get by parallelization

Speed up =
 S + P

 S + (P/N)

S = Fraction of the code which is serial

P = Fraction of the code which can be parallel

S + P = 1

N = Number of processor

18

Amdahl’s Law

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

S
pe

e
d
up

Cores

0.5

0.75

0.95

0.99

1

P values

19

Exercise: Parallelize Sum of Squares

 Each iteration depends on the result of the iteration before.

 As written, unparalleizable

 P = 0

 How would you create parallelism here?

20

S = 0;

for (i=0; i<100; ++i)

 s += X[i]**2; //two instructions per loop

