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 Hardware multithreading  

 CilkPlus and OpenMP:  simple parallel 
extensions to C/C++ for high-level parallel 
programming on multicores 

 Parallel performance metrics and profiling tool 
cilkview 
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Multithreading on A Chip 

 Find a way to “hide” true data dependency stalls, cache 

miss stalls, and branch stalls by finding instructions (from 

other process threads) that are independent of those 

stalling instructions  

 Hardware multithreading – increase the utilization of 

resources on a chip by allowing multiple processes 

(threads) to share the functional units of a single 

processor 

 Processor must duplicate the state hardware for each thread – a 

separate register file, PC, instruction buffer, and store buffer for 

each thread 

 The caches, TLBs, BHT, BTB, RUU can be shared (although the 

miss rates may increase if they are not sized accordingly) 

 The memory can be shared through virtual memory mechanisms 

 Hardware must support efficient thread context switching 
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Types of Hardware Multithreading 

 Fine-grain – switch threads on every instruction issue 

 Round-robin thread interleaving (skipping stalled threads) 

 Processor must be able to switch threads on every clock cycle 

 Advantage – can hide throughput losses that come from both 

short and long stalls 

 Disadvantage – slows down the execution of an individual 

thread since a thread that is ready to execute without stalls is 

delayed by instructions from other threads 

 Coarse-grain – switches threads only on costly stalls 

(e.g., L2 cache misses) 

 Advantage – thread switching doesn’t have to be essentially 

free and much less likely to slow down the execution of an 

individual thread 

 Disadvantage – limited, due to pipeline start-up costs, in its 

ability to overcome throughput loss 

- Pipeline must be flushed and refilled on thread switches 
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Multithreaded Example:  Sun’s Niagara (UltraSparc T2) 

 Eight fine grain multithreaded single-issue, in-order 
cores (no speculation, no dynamic branch prediction) 

Niagara 2 

Data width 64-b 

Clock rate 1.4 GHz 

Cache 

(I/D/L2) 

16K/8K/4M 

Issue rate 1 issue 

Pipe stages 6 stages 

BHT entries None 

TLB entries 64I/64D 

Memory BW 60+ GB/s 

Transistors ??? million 

Power (max) <95 W 
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Niagara Integer Pipeline 

 Cores are simple (single-issue, 6 stages, no branch 
prediction), small, and power-efficient 
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Simultaneous Multithreading (SMT) 

 A variation on multithreading that uses the resources of a 

multiple-issue, dynamically scheduled processor 

(superscalar) to exploit both ILP and TLP 

 Most SS processors have more functional unit parallelism than a 

single thread can effectively use 

 With register renaming and dynamic scheduling, multiple 

instructions from independent threads can be issued without 

regard to dependencies among them 

- Need separate rename tables (RUUs) for each thread or need to be 

able to indicate which thread the entry belongs to 

- Need the capability to commit from multiple threads in one cycle 
 

 Intel’s Pentium 4 SMT is called hyperthreading 

 Supports just two threads (doubles the architecture state) 
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Microprocessor Comparison 

Processor SUN T1 Opteron Pentium D IBM Power 5 

Cores 8 2 2 2 

Instruction issues  

/ clock / core 1 3 3 4 

Peak instr. issues  

/ chip 8 6 6 8 

Multithreading Fine-grained No SMT SMT 

L1 I/D in KB per core 16/8 64/64 12K uops/16  64/32 

L2 per core/shared 3 MB shared 1MB / core 1MB/  core 1.9 MB shared 

Clock rate (GHz) 1.2 2.4 3.2 1.9 

Transistor count (M) 300 233 230 276 

Die size (mm2) 379 199 206 389 

Power (W) 79 110 130 125 



Summary of Hardware Multithreading 

 Benefit: 

 All multithreading techniques improve the utilisation of processor 
resources and, hence, the performance 

 If the different threads are accessing the same input data they 
may be using the same regions of memory  

- Cache efficiency improves in these cases 

 Disadvantage: 

 The perceived performance may be degraded when comparing 
with a single-thread CPU 

- Multiple threads interfering with each other 

 The cache has to be shared among several threads so 
effectively they would use a smaller cache 

 Thread scheduling at hardware level adds high complexity to 
processor design 

- Thread state, managing priorities, OS-level information, … 
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Shared Memory Model with Explicit Thread-based Parallelism 

 Shared memory process consists of multiple threads, 
explicit programming model with full programmer 
control over parallelization 

 Pros: 

 Takes advantage of shared memory, programmer need not 
worry (that much) about data placement 

 Programming model is “serial-like” and thus conceptually 
simpler than alternatives 

 Compiler directives are generally simple and easy to use 

 Legacy serial code does not need to be rewritten 

 Cons: 

 Codes can only be run in shared memory environments! 

 Compiler must support  
(e.g., CilkPlus and OpenMP in gcc 4.xx)  
(both are available on the machines in MC10) 
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Introduction to CilkPlus 
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Introduction to OpenMP 

 API used for multi-threaded, shared memory parallelism 

 Compiler Directives 

 Runtime Library Routines 

 Environment Variables 

 Portable 

 Standardized 

 See  
http://www.openmp.org/mp documents/OpenMP4.0.0.pdf 
http://computing.llnl.gov/tutorials/openMP/  
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http://computing.llnl.gov/tutorials/openMP/


OpenMP Programming Model 

 Fork - Join Model: 

 

 

 

 
 

 OpenMP programs begin as single process: master 
thread; Executes sequentially until the first parallel region 
construct is encountered 
 FORK: the master thread then creates a team of parallel threads 
 Statements in program that are enclosed by the parallel region 

construct are executed in parallel among the various team 
threads 

 JOIN: When the team threads complete the statements in the 
parallel region construct, they synchronize and terminate, leaving 
only the master thread 
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OpenMP Directives 
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shares iterations of a  

loop across the team 

each section executed 

by a separate thread 
serializes the execution 

of a thread 



OpenMP Specification 
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OpenMP Extends C with Pragmas  

 Pragmas are a mechanism C provides for language 
extensions 

 Commonly implemented pragmas:  structure packing, 
symbol aliasing, floating point exception modes 

 Good mechanism for OpenMP because compilers that don't 
recognize a pragma are supposed to ignore them 

 Runs on sequential computer even with embedded pragmas 
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Matrix Multiply in OpenMP 

#pragma omp parallel for private(tmp, i, j, k)   

 for(i=0; i<Ndim; i++){ 

     for(j=0; j<Mdim; j++){ 

        tmp = 0.0; 

       for( k=0; k<Pdim; k++){ 

     tmp += A[i*Ndim+k] * B[k*Pdim+j]; 

       } 

       C[i*Ndim+j] = tmp; 

    } 

 } 
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Note: Outer loop spread 

across N threads; inner 

loops inside a thread 



Amdahl’s Law:  theoretically how much speed up 
you can get by parallelization 

Speed up = 
   S + P 

 S + (P/N) 

S = Fraction of the code which is serial 

 

P = Fraction of the code which can be parallel 

 

S + P = 1 

 

N = Number of processor 
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Amdahl’s Law 
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Exercise: Parallelize Sum of Squares 

 Each iteration depends on the result of the iteration before. 

 As written, unparalleizable 

 P = 0 

 

 How would you create parallelism here? 
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S = 0; 

for (i=0; i<100; ++i) 

     s += X[i]**2; //two instructions per loop 


