
An Overview of General Purpose Graphics
Processing Units

Marc Moreno Maza

University of Western Ontario, Canada

UWO
April 1st, 2014



The CUDA programming and memory models

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100’s of cores, 1000’s of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms



The CUDA programming and memory models

Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).



The CUDA programming and memory models

Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks.

One kernel is executed at a time on the device.

Many threads execute each kernel.



The CUDA programming and memory models

Heterogeneous programming (3/3)

The parallel code is written for a thread
• Each thread is free to execute a unique code path
• Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

Thus, each thread executes the same code on different data based on
its thread and block ID.



The CUDA programming and memory models

Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4



The CUDA programming and memory models

Example: increment array elements (2/2)



The CUDA programming and memory models

Thread blocks (1/2)

A Thread block is a group of threads that can:
• Synchronize their execution
• Communicate via shared memory

Within a grid, thread blocks can run in any order:
• Concurrently or sequentially
• Facilitates scaling of the same code across many devices



The CUDA programming and memory models

Thread blocks (2/2)

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks may coordinate but not synchronize
• they may share pointers
• they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:
• A kernel scales across any number of parallel cores

However, within a thread block, threads may synchronize with
barriers.

That is, threads wait at the barrier until all threads in the same
block reach the barrier.



The CUDA programming and memory models

Memory hierarchy (1/3)

Host (CPU) memory:

Not directly accessible by CUDA threads



The CUDA programming and memory models

Memory hierarchy (2/3)

Global (on the device) memory:

Also called device memory

Accessible by all threads as well as host (CPU)

Data lifetime = from allocation to deallocation



The CUDA programming and memory models

Memory hierarchy (3/3)

Shared memory:

Each thread block has its own shared memory, which is accessible
only by the threads within that block

Data lifetime = block lifetime

Local storage:

Each thread has its own local storage

Data lifetime = thread lifetime



The CUDA programming and memory models

Blocks run on multiprocessors



The CUDA programming and memory models

Streaming processors and multiprocessors



The CUDA programming and memory models

Hardware multithreading

Hardware allocates resources to blocks:
• blocks need: thread slots, registers, shared memory
• blocks don’t run until resources are available

Hardware schedules threads:
• threads have their own registers
• any thread not waiting for something can run
• context switching is free every cycle

Hardware relies on threads to hide latency:
• thus high parallelism is necessary for performance.



The CUDA programming and memory models

SIMT thread execution

At each clock cycle, a multiprocessor executes the same instruction
on a group of threads called a warp

• The number of threads in a warp is the warp size (32 on G80)
• A half-warp is the first or second half of a warp.

Within a warp, threads
• share instruction fetch/dispatch
• some become inactive when code path diverges
• hardware automatically handles divergence

Warps are the primitive unit of scheduling:
• each active block is split into warps in a well-defined way
• threads within a warp are executed physically in parallel while warps

and blocks are executed logically in parallel.



The CUDA programming and memory models

Returning to the example



The CUDA programming and memory models

Example host code for increment array elements


	The CUDA programming and memory models

