
CS3350: Efficient Usage of GPUs Memory Hierrachy:
Lesson Learning through Matrix Transposition

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

UWO CS3350

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 1 / 38

Plan

1 Using Shared Memory

2 A Common Strategy

3 Optimizing Matrix Transpose with CUDA

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 2 / 38

Using Shared Memory

Plan

1 Using Shared Memory

2 A Common Strategy

3 Optimizing Matrix Transpose with CUDA

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 3 / 38

Using Shared Memory

Reversing an array (1/4)

Write a CUDA kernel (and the launching code) implementing the reversal
of an input integer n. This reversing process will be out-of-place. We shall
proced as follows:

(1) start with a naive kernel not using shared memory

(2) then develop a kernel using shared memory.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 4 / 38

Using Shared Memory

Reversing an array (2/4)

__global__ void reverseArrayBlock(int *d_out, int *d_in)

{

int inOffset = blockDim.x * blockIdx.x;

int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

int in = inOffset + threadIdx.x;

int out = outOffset + (blockDim.x - 1 - threadIdx.x);

d_out[out] = d_in[in];

}

int numThreadsPerBlock = 256;

int numBlocks = dimA / numThreadsPerBlock;

dim3 dimGrid(numBlocks);

dim3 dimBlock(numThreadsPerBlock);

reverseArrayBlock<<< dimGrid, dimBlock >>>(d_b, d_a);

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 5 / 38

Using Shared Memory

Reversing an array (3/4)

__global__ void reverseArrayBlock(int *d_out, int *d_in)

{

extern __shared__ int s_data[];

int inOffset = blockDim.x * blockIdx.x;

int in = inOffset + threadIdx.x;

// Load one element per thread from device memory and store it

// *in reversed order* into temporary shared memory

s_data[blockDim.x - 1 - threadIdx.x] = d_in[in];

// Block until all threads in the block have

// written their data to shared mem

__syncthreads();

// write the data from shared memory in forward order,

// but to the reversed block offset as before

int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

int out = outOffset + threadIdx.x;

d_out[out] = s_data[threadIdx.x];

}

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 6 / 38

Using Shared Memory

Reversing an array (4/4)

int numThreadsPerBlock = 256;

int numBlocks = dimA / numThreadsPerBlock;

int sharedMemSize = numThreadsPerBlock * sizeof(int);

// launch kernel

dim3 dimGrid(numBlocks);

dim3 dimBlock(numThreadsPerBlock);

reverseArrayBlock<<< dimGrid,dimBlock,haredMemSize >>>(d_b,d_a);

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 7 / 38

A Common Strategy

Plan

1 Using Shared Memory

2 A Common Strategy

3 Optimizing Matrix Transpose with CUDA

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 8 / 38

A Common Strategy

A Common Programming Strategy

Partition data into subsets that fit into shared memory

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 9 / 38

A Common Strategy

A Common Programming Strategy

Handle each data subset with one thread block

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 10 / 38

A Common Strategy

A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 11 / 38

A Common Strategy

A Common Programming Strategy

Perform the computation on the subset from shared memory.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 12 / 38

A Common Strategy

A Common Programming Strategy

Copy the result from shared memory back to global memory.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 13 / 38

A Common Strategy

A Common Programming Strategy

Carefully partition data according to access patterns

If read only, use constant memory (fast)

for read/write access within a tile, use shared memory (fast)

for read/write scalar access within a thread, use registers (fast)

R/W inputs/results cudaMalloc’ed, use global memory (slow)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 14 / 38

Optimizing Matrix Transpose with CUDA

Plan

1 Using Shared Memory

2 A Common Strategy

3 Optimizing Matrix Transpose with CUDA

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 15 / 38

Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (1/2)

We optimize a transposition code for a matrix of floats. This operates
out-of-place:

input and output matrices address separate memory locations.

For simplicity, we consider an n × n matrix where 32 divides n.
We focus on the device code:

the host code performs typical tasks: data allocation and transfer between host
and device, the launching and timing of several kernels, result validation, and
the deallocation of host and device memory.

Benchmarks illustrate this section:

we compare our matrix transpose kernels against a matrix copy kernel,
for each kernel, we compute the effective bandwidth, calculated in GB/s as
twice the size of the matrix (once for reading the matrix and once for writing)
divided by the time of execution,
Each operation is run NUM REFS times (for normalizing the measurements),
This looping is performed once over the kernel and once within the kernel,
The difference between these two timings is kernel launch and synchronization
overheads.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 16 / 38

Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (2/2)

We present hereafter different kernels called from the host code, each
addressing different performance issues.

All kernels in this study launch thread blocks of dimension 32x8,
where each block transposes (or copies) a tile of dimension 32x32.

As such, the parameters TILE DIM and BLOCK ROWS are set to 32 and
8, respectively.

Using a thread block with fewer threads than elements in a tile is
advantageous for the matrix transpose:

each thread transposes several matrix elements, four in our case, and
much of the cost of calculating the indices is amortized over these
elements.

This study is based on a technical report by Greg Ruetsch (NVIDIA)
and Paulius Micikevicius (NVIDIA).

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 17 / 38

Optimizing Matrix Transpose with CUDA

A simple copy kernel (1/2)

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) { // normalization outer loop

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 18 / 38

Optimizing Matrix Transpose with CUDA

A simple copy kernel (2/2)

odata and idata are pointers to the input and output matrices,
width and height are the matrix x and y dimensions,
nreps determines how many times the loop over data movement
between matrices is performed.
In this kernel, xIndex and yIndex are global 2D matrix indices,
used to calculate index, the 1D index used to access matrix elements.

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

} } }
(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 19 / 38

Optimizing Matrix Transpose with CUDA

A naive transpose kernel

_global__ void transposeNaive(float *odata, float* idata,

int width, int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 20 / 38

Optimizing Matrix Transpose with CUDA

Naive transpose kernel vs copy kernel

The performance of these two kernels on a 2048x2048 matrix using a
GTX280 is given in the following table:

Routine Bandwidth (GB/s)

copy 105.14

naive transpose 18.82

The minor differences in code between the copy and nave transpose
kernels have a profound effect on performance.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 21 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (1/11)

Because device memory has a much higher latency and lower
bandwidth than on-chip memory, special attention must be paid to:
how global memory accesses are performed?

The simultaneous global memory accesses by each thread of a
half-warp (16 threads on G80) during the execution of a single read or
write instruction will be coalesced into a single access if:

1 The size of the memory element accessed by each thread is either 4, 8,
or 16 bytes.

2 The address of the first element is aligned to 16 times the element’s
size.

3 The elements form a contiguous block of memory.
4 The i-th element is accessed by the i-th thread in the half-warp.

Last two requirements are relaxed with compute capabilities of 1.2.

Coalescing happens even if some threads do not access memory
(divergent warp)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 22 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (2/11)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 23 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (3/11)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 24 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (4/11)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 25 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (5/11)

Allocating device memory through cudaMalloc() and choosing
TILE DIM to be a multiple of 16 ensures alignment with a
segment of memory, therefore all loads from idata are coalesced.

Coalescing behavior differs between the simple copy and naive
transpose kernels when writing to odata.

In the case of the naive transpose, for each iteration of the i-loop a
half warp writes one half of a column of floats to different segments
of memory:

resulting in 16 separate memory transactions,
regardless of the compute capability.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 26 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (6/11)

The way to avoid uncoalesced global memory access is
1 to read the data into shared memory and,
2 have each half warp access non-contiguous locations in shared memory

in order to write contiguous data to odata.

There is no performance penalty for non-contiguous access patterns in
shared memory as there is in global memory.

a synchthreads() call is required to ensure that all reads from
idata to shared memory have completed before writes from shared
memory to odata commence.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 27 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (7/11)

__global__ void transposeCoalesced(float *odata,

float *idata, int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} __syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

} }
(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 28 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (8/11)

1 The half warp writes four half rows of the idata matrix tile to the
shared memory 32x32 array tile indicated by the yellow line
segments.

2 After a syncthreads() call to ensure all writes to tile are
completed,

3 the half warp writes four half columns of tile to four half rows of an
odata matrix tile, indicated by the green line segments.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 29 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (9/11)

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

While there is a dramatic increase in effective bandwidth of the coalesced
transpose over the naive transpose, there still remains a large performance
gap between the coalesced transpose and the copy:

One possible cause of this performance gap could be the
synchronization barrier required in the coalesced transpose.

This can be easily assessed using the following copy kernel which
utilizes shared memory and contains a syncthreads() call.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 30 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (10/11)

_global__ void copySharedMem(float *odata, float *idata,

int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] =

tile[threadIdx.y+i][threadIdx.x];

} }

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 31 / 38

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (11/11)

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

The shared memory copy results seem to suggest that the use of shared
memory with a synchronization barrier has little effect on the performance,
certainly as far as the Loop in kernel column indicates when comparing
the simple copy and shared memory copy.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 32 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (1/6)

1 Shared memory is divided into 16 equally-sized memory modules,
called banks, which are organized such that successive 32-bit words
are assigned to successive banks.

2 These banks can be accessed simultaneously, and to achieve maximum
bandwidth to and from shared memory the threads in a half warp
should access shared memory associated with different banks.

3 The exception to this rule is when all threads in a half warp read
the same shared memory address, which results in a broadcast where
the data at that address is sent to all threads of the half warp in one
transaction.

4 One can use the warp serialize flag when profiling CUDA
applications to determine whether shared memory bank conflicts
occur in any kernel.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 33 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (2/6)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 34 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (3/6)

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 35 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (4/6)

1 The coalesced transpose uses a 32 × 32 shared memory array of
floats.

2 For this sized array, all data in columns k and k+16 are mapped to
the same bank.

3 As a result, when writing partial columns from tile in shared
memory to rows in odata the half warp experiences a 16-way bank
conflict and serializes the request.

4 A simple way to avoid this conflict is to pad the shared memory array
by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 36 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (5/6)

The padding does not affect shared memory bank access pattern when
writing a half warp to shared memory, which remains conflict free,

but by adding a single column now the access of a half warp of data
in a column is also conflict free.

The performance of the kernel, now coalesced and memory bank
conflict free, is added to our table on the next slide.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 37 / 38

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (6/6)

Device : Tesla M2050

Matrix size: 1024 1024, Block size: 32 8, Tile size: 32 32

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

conflict-free transpose 99.83

While padding the shared memory array did eliminate shared memory
bank conflicts, as was confirmed by checking the warp serialize

flag with the CUDA profiler, it has little effect (when implemented at
this stage) on performance.
As a result, there is still a large performance gap between the
coalesced and shared memory bank conflict free transpose and the
shared memory copy.

(Moreno Maza) CS3350: Efficient Usage of GPUs Memory Hierrachy: Lesson Learning through Matrix Transposition3 April 2014 38 / 38

	Using Shared Memory
	A Common Strategy
	Optimizing Matrix Transpose with CUDA

