
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

p

i i

10 Part-of-Speech Tagging

The ultimate goal of research on Natural Language Processing is
to parse and understand language. As we have seen in the preceding
chapters, we are still far from achieving this goal. For this reason, much
research in NLP has focussed on intermediate tasks that make sense of
some of the structure inherent in language without requiring complete
understanding. One such task is part-of-speech tagging, or simply tag-tagging

ging. Tagging is the task of labeling (or tagging) each word in a sentence
with its appropriate part of speech. We decide whether each word is a
noun, verb, adjective, or whatever. Here is an example of a tagged sen-
tence:

(10.1) The-AT representative-NN put-VBD chairs-NNS on-IN the-AT table-NN.

The part-of-speech tags we use in this chapter are shown in table 10.1,
and generally follow the Brown/Penn tag sets (see section 4.3.2). Note
that another tagging is possible for the same sentence (with the rarer
sense for put of an option to sell):

(10.2) The-AT representative-JJ put-NN chairs-VBZ on-IN the-AT table-NN.

But this tagging gives rise to a semantically incoherent reading. The tag-
ging is also syntactically unlikely since uses of put as a noun and uses of
chairs as an intransitive verb are rare.

This example shows that tagging is a case of limited syntactic disam-
biguation. Many words have more than one syntactic category. In tagging,
we try to determine which of these syntactic categories is the most likely
for a particular use of a word in a sentence.

Tagging is a problem of limited scope: Instead of constructing a com-
plete parse, we just fix the syntactic categories of the words in a sentence.

p

i i

342 10 Part-of-Speech Tagging

Tag Part Of Speech

AT article
BEZ the word is
IN preposition
JJ adjective
JJR comparative adjective
MD modal
NN singular or mass noun
NNP singular proper noun
NNS plural noun
PERIOD . : ? !
PN personal pronoun
RB adverb
RBR comparative adverb
TO the word to
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present
WDT wh- determiner (what, which)

Table 10.1 Some part-of-speech tags frequently used for tagging English.

For example, we are not concerned with finding the correct attachment
of prepositional phrases. As a limited effort, tagging is much easier to
solve than parsing, and accuracy is quite high. Between 96% and 97% of
tokens are disambiguated correctly by the most successful approaches.
However, it is important to realize that this impressive accuracy figure is
not quite as good as it looks, because it is evaluated on a per-word basis.
For instance, in many genres such as newspapers, the average sentence is
over twenty words, and on such sentences, even with a tagging accuracy
of 96% this means that there will be on average over one tagging error
per sentence.

Even though it is limited, the information we get from tagging is still
quite useful. Tagging can be used in information extraction, question an-

p

i i

10.1 The Information Sources in Tagging 343

swering, and shallow parsing. The insight that tagging is an intermediate
layer of representation that is useful and more tractable than full parsing
is due to the corpus linguistics work that was led by Francis and Kučera
at Brown University in the 1960s and 70s (Francis and Kučera 1982).

The following sections deal with Markov Model taggers, Hidden Markov
Model taggers and transformation-based tagging. At the end of the chap-
ter, we discuss levels of accuracy for different approaches to tagging. But
first we make some general comments on the types of information that
are available for tagging.

10.1 The Information Sources in Tagging

How can one decide the correct part of speech for a word used in a con-
text? There are essentially two sources of information. One way is to look
at the tags of other words in the context of the word we are interested in.
These words may also be ambiguous as to their part of speech, but the
essential observation is that some part of speech sequences are common,
such as AT JJ NN, while others are extremely unlikely or impossible, such
as AT JJ VBP. Thus when choosing whether to give an NN or a VBP tag
to the word play in the phrase a new play, we should obviously choose
the former. This type of syntagmatic structural information is the mostsyntagmatic

obvious source of information for tagging, but, by itself, it is not very
successful. For example, Greene and Rubin (1971), an early deterministic
rule-based tagger that used such information about syntagmatic patterns
correctly tagged only 77% of words. This made the tagging problem look
quite hard. One reason that it looks hard is that many content words in
English can have various parts of speech. For example, there is a very
productive process in English which allows almost any noun to be turned
into a verb, for example, Next, you flour the pan, or, I want you to web our
annual report. This means that almost any noun should also be listed in a
dictionary as a verb as well, and we lose a lot of constraining information
needed for tagging.

These considerations suggest the second information source: just
knowing the word involved gives a lot of information about the correct
tag. Although flour can be used as a verb, an occurrence of flour is much
more likely to be a noun. The utility of this information was conclusively
demonstrated by Charniak et al. (1993), who showed that a ‘dumb’ tagger

p

i i

344 10 Part-of-Speech Tagging

that simply assigns the most common tag to each word performs at the
surprisingly high level of 90% correct.1 This made tagging look quite easy
– at least given favorable conditions, an issue to which we shall return. As
a result of this, the performance of such a ‘dumb’ tagger has been used to
give a baseline performance level in subsequent studies. And all modern
taggers in some way make use of a combination of syntagmatic informa-
tion (looking at information about tag sequences) and lexical information
(predicting a tag based on the word concerned).

Lexical information is so useful because the distribution of a word’s us-
ages across different parts of speech is typically extremely uneven. Even
for words with a number of parts of speech, they usually occur used
as one particular part of speech. Indeed, this distribution is usually so
marked that this one part of speech is often seen as basic, with others be-
ing derived from it. As a result, this has led to a certain tension over the
way the term ‘part of speech’ has been used. In traditional grammars, one
often sees a word in context being classified as something like ‘a noun be-
ing used as an adjective,’ which confuses what is seen as the ‘basic’ part
of speech of the lexeme with the part of speech of the word as used in
the current context. In this chapter, as in modern linguistics in general,
we are concerned with determining the latter concept, but nevertheless,
the distribution of a word across the parts of speech gives a great deal
of additional information. Indeed, this uneven distribution is one reason
why one might expect statistical approaches to tagging to be better than
deterministic approaches: in a deterministic approach one can only say
that a word can or cannot be a verb, and there is a temptation to leave
out the verb possibility if it is very rare (since doing so will probably lift
the level of overall performance), whereas within a statistical approach,
we can say that a word has an extremely high a priori probability of being
a noun, but there is a small chance that it might be being used as a verb,
or even some other part of speech. Thus syntactic disambiguation can be
argued to be one context in which a framework that allows quantitative
information is more adequate for representing linguistic knowledge than
a purely symbolic approach.

1. The general efficacy of this method was noted earlier by Atwell (1987).

p

i i

10.2 Markov Model Taggers 345

10.2 Markov Model Taggers

10.2.1 The probabilistic model

In Markov Model tagging, we look at the sequence of tags in a text as a
Markov chain. As discussed in chapter 9, a Markov chain has the follow-
ing two properties:

� Limited horizon. P(Xi+1 = tj |X1, . . . , Xi) = P(Xi+1 = tj |Xi)
� Time invariant (stationary). P(Xi+1 = tj |Xi) = P(X2 = tj|X1)

That is, we assume that a word’s tag only depends on the previous tag
(limited horizon) and that this dependency does not change over time
(time invariance). For example, if a finite verb has a probability of 0.2 to
occur after a pronoun at the beginning of a sentence, then this probability
will not change as we tag the rest of the sentence (or new sentences). As
with most probabilistic models, the two Markov properties only approxi-
mate reality. For example, the Limited Horizon property does not model
long-distance relationships like Wh-extraction – this was in fact the core
of Chomsky’s famous argument against using Markov Models for natural
language.

Exercise 10.1 [«]

What are other linguistic phenomena that are not modeled correctly by Markov
chains? Which general property of language is common to these phenomena?

Exercise 10.2 [«]

Why is Time Invariance problematic for modeling language?

Following (Charniak et al. 1993), we will use the notation in table 10.2.
We use subscripts to refer to words and tags in particular positions of
the sentences and corpora we tag. We use superscripts to refer to word
types in the lexicon of words and to refer to tag types in the tag set. In
this compact notation, we can state the above Limited Horizon property
as follows:

P(ti+1|t1,i) = P(ti+1|ti)
We use a training set of manually tagged text to learn the regularities

of tag sequences. The maximum likelihood estimate of tag tk following

p

i i

346 10 Part-of-Speech Tagging

wi the word at position i in the corpus
ti the tag of wi
wi,i+m the words occurring at positions i through i +m

(alternative notations: wi · · ·wi+m, wi, . . . , wi+m, wi(i+m))
ti,i+m the tags ti · · · ti+m for wi · · ·wi+m
wl the lth word in the lexicon
tj the jth tag in the tag set
C(wl) the number of occurrences of wl in the training set
C(tj) the number of occurrences of tj in the training set
C(tj , tk) the number of occurrences of tj followed by tk

C(wl : tj) the number of occurrences of wl that are tagged as tj

T number of tags in tag set
W number of words in the lexicon
n sentence length

Table 10.2 Notational conventions for tagging.

tj is estimated from the relative frequencies of different tags following a
certain tag as follows:

P(tk|tj) = C(t
j , tk)

C(tj)

For instance, following on from the example of how to tag a new play, we
would expect to find that P(NN|JJ) � P(VBP|JJ). Indeed, on the Brown
corpus, P(NN|JJ) ≈ 0.45 and P(VBP|JJ) ≈ 0.0005.

With estimates of the probabilities P(ti+1|ti), we can compute the prob-
ability of a particular tag sequence. In practice, the task is to find the
most probable tag sequence for a sequence of words, or equivalently, the
most probable state sequence for a sequence of words (since the states
of the Markov Model here are tags). We incorporate words by having the
Markov Model emit words each time it leaves a state. This is similar to
the symbol emission probabilities bijk in HMMs from chapter 9:

P(On = k|Xn = si, Xn+1 = sj) = bijk

The difference is that we can directly observe the states (or tags) if we
have a tagged corpus. Each tag corresponds to a different state. We

p

i i

10.2 Markov Model Taggers 347

can also directly estimate the probability of a word being emitted by a
particular state (or tag) via Maximum Likelihood Estimation:

P(wl|tj) = C(w
l, tj)

C(tj)
Now we have everything in place to find the best tagging t1,n for a sen-

tence w1,n. Applying Bayes’ rule, we can write:

arg max
t1,n

P(t1,n|w1,n) = arg max
t1,n

P(w1,n|t1,n)P(t1,n)
P(w1,n)

(10.3)

= arg max
t1,n

P(w1,n|t1,n)P(t1,n)

We now reduce this expression to parameters that can be estimated
from the training corpus. In addition to the Limited Horizon assumption
(10.5), we make two assumptions about words:

� words are independent of each other (10.4), and

� a word’s identity only depends on its tag (10.5)

P(w1,n|t1,n)P(t1,n) =
n∏
i=1

P(wi|t1,n)(10.4)

×P(tn|t1,n−1)× P(tn−1|t1,n−2)× · · · × P(t2|t1)

=
n∏
i=1

P(wi|ti)(10.5)

×P(tn|tn−1)× P(tn − 1|tn−2)× · · · × P(t2|t1)

=
n∏
i=1

[
P(wi|ti)× P(ti|ti−1)

]
(10.6)

(We define P(t1|t0) = 1.0 to simplify our notation.)

Exercise 10.3 [«]

These are simplifying assumptions. Give two examples each of phenomena
where independence of words (10.4) and independence from previous and fol-
lowing tags (10.5) don’t hold.

So the final equation for determining the optimal tags for a sentence
is:

t̂1,n = arg max
t1,n

P(t1,n|w1,n) =
n∏
i=1

P(wi|ti)P(ti|ti−1)(10.7)

pa

i i

348 10 Part-of-Speech Tagging

1 for all tags tj do
2 for all tags tk do

3 P(tk|tj) := C(tj ,tk)
C(tj)

4 end
5 end
6 for all tags tj do
7 for all words wl do

8 P(wl|tj) := C(wl,tj)
C(tj)

9 end
10 end

Figure 10.1 Algorithm for training a Visible Markov Model Tagger. In most
implementations, a smoothing method is applied for estimating the P(tk|tj) and
P(wl|tj).

Second tag
First tag AT BEZ IN NN VB PERIOD
AT 0 0 0 48636 0 19
BEZ 1973 0 426 187 0 38
IN 43322 0 1325 17314 0 185
NN 1067 3720 42470 11773 614 21392
VB 6072 42 4758 1476 129 1522
PERIOD 8016 75 4656 1329 954 0

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For
example, NN occurs 48636 times after AT.

The algorithm for training a Markov Model tagger is summarized in
figure 10.1. The next section describes how to tag with a Markov Model
tagger once it is trained.

Exercise 10.4 [«]

Given the data in table 10.3, compute maximum likelihood estimates as shown
in figure 10.1 for P(AT|PERIOD), P(NN|AT), P(BEZ|NN), P(IN|BEZ), P(AT|IN),
and P(PERIOD|NN). Assume that the total number of occurrences of tags can be
obtained by summing over the numbers in a row (e.g., 1973+426+187 for BEZ).

Exercise 10.5 [«]

Given the data in table 10.4, compute maximum likelihood estimates as shows in
figure 10.1 for P(bear|tk), P(is|tk), P(move|tk), P(president|tk), P(progress|tk),
and P(the|tk). Take the total number of occurrences of tags from table 10.3.

p

i i

10.2 Markov Model Taggers 349

AT BEZ IN NN VB PERIOD
bear 0 0 10 0 43 0
is 0 10065 0 0 0 0
move 0 0 0 36 133 0
on 0 0 5484 0 0 0
president 0 0 0 382 0 0
progress 0 0 0 108 4 0
the 69016 0 0 0 0 0
. 0 0 0 0 0 48809

Table 10.4 Idealized counts of tags that some words occur within the Brown
Corpus. For example, 36 occurrences of move are with the tag NN.

Exercise 10.6 [«]

Compute the following two probabilities:

� P(AT NN BEZ IN AT NN|The bear is on the move.)
� P(AT NN BEZ IN AT VB|The bear is on the move.)

10.2.2 The Viterbi algorithm

We could evaluate equation (10.7) for all possible taggings t1,n of a sen-
tence of length n, but that would make tagging exponential in the length
of the input that is to be tagged. An efficient tagging algorithm is the
Viterbi algorithm from chapter 9. To review, the Viterbi algorithm has
three steps: (i) initialization, (ii) induction, and (iii) termination and path-
readout. We compute two functions δi(j), which gives us the probability
of being in state j (= tag j) at word i, andψi+1(j), which gives us the most
likely state (or tag) at word i given that we are in state j at word i + 1.
The reader may want to review the discussion of the Viterbi algorithm in
section 9.3.2 before reading on. Throughout, we will refer to states as
tags in this chapter because the states of the model correspond to tags.
(But note that this is only true for a bigram tagger.)

The initialization step is to assign probability 1.0 to the tag PERIOD:

δ1(PERIOD) = 1.0

δ1(t) = 0.0 for t ≠ PERIOD

That is, we assume that sentences are delimited by periods and we pre-
pend a period in front of the first sentence in our text for convenience.

pa

i i

350 10 Part-of-Speech Tagging

1 comment: Given: a sentence of length n
2 comment: Initialization
3 δ1(PERIOD) = 1.0
4 δ1(t) = 0.0 for t ≠ PERIOD
5 comment: Induction
6 for i := 1 to n step 1 do
7 for all tags tj do
8 δi+1(tj) := max1≤k≤T [δi(tk)× P(wi+1|tj)× P(tj |tk)]
9 ψi+1(tj) := arg max1≤k≤T [δi(tk)× P(wi+1|tj)× P(tj |tk)]

10 end
11 end
12 comment: Termination and path-readout
13 Xn+1 = arg max1≤j≤T δn+1(j)
14 for j := n to 1 step − 1 do
15 Xj = ψj+1(Xj+1)
16 end
17 P(X1, . . . , Xn) = max1≤j≤Tδn+1(tj)

Figure 10.2 Algorithm for tagging with a Visible Markov Model Tagger.

The induction step is based on equation (10.7), where ajk = P(tk|tj)
and bjkwl = P(wl|tj):
δi+1(tj) = max

1≤k≤T
[
δi(tk)× P(wi+1|tj)× P(tj |tk)

]
, 1 ≤ j ≤ T

ψi+1(tj) = arg max
1≤k≤T

[
δi(tk)× P(wi+1|tj)× P(tj |tk)

]
, 1 ≤ j ≤ T

Finally, termination and read-out steps are as follows, where X1, . . . , Xn
are the tags we choose for words w1, . . . , wn:

Xn = arg max
1≤j≤T

δn(tj)

Xi = ψi+1(Xi+1), 1 ≤ i ≤ n− 1

P(X1, . . . , Xn) = max1≤j≤Tδn+1(tj)

Tagging with a Visible Markov Model tagger is summarized in figure 10.2.

Exercise 10.7 [«]

Based on the probability estimates from the previous set of exercises, tag the
following sentence using the Viterbi algorithm.

p

i i

10.2 Markov Model Taggers 351

(10.8) The bear is on the move.

Exercise 10.8

Some larger data sets of tag sequence probabilities and some suggested exercises
are available on the website.

Terminological note: Markov Models vs. Hidden Markov Models. The
reader may have noticed that for the purposes of tagging, the Markov
Models in this chapter are treated as Hidden Markov Models. This is
because we can observe the states of the Markov Model in training (the
tags of the labeled corpus), but we only observe words in applying the
Markov Model to the tagging task. We could say that the formalism used
in Markov Model tagging is really a mixed formalism. We construct ‘Visi-
ble’ Markov Models in training, but treat them as Hidden Markov Models
when we put them to use and tag new corpora.

10.2.3 Variations

Unknown words

We have shown how to estimate word generation probabilities for words
that occur in the corpus. But many words in sentences we want to tag
will not be in the training corpus. Some words will not even be in the
dictionary. We discussed above that knowing the a priori distribution of
the tags for a word (or at any rate the most common tag for a word) takes
you a great deal of the way in solving the tagging problem. This means
that unknown words are a major problem for taggers, and in practice,
the differing accuracy of different taggers over different corpora is often
mainly determined by the proportion of unknown words, and the smarts
built into the tagger that allow it to try to guess the part of speech of
unknown words.

The simplest model for unknown words is to assume that they can be
of any part of speech (or perhaps only any open class part of speech
– that is nouns, verbs, etc., but not prepositions or articles). Unknown
words are given a distribution over parts of speech corresponding to that
of the lexicon as a whole. While this approach is serviceable in some
cases, the loss of lexical information for these words greatly lowers the
accuracy of the tagger, and so people have tried to exploit other features
of the word and its context to improve the lexical probability estimates
for unknown words. Often, we can use morphological and other cues to

pa

i i

352 10 Part-of-Speech Tagging

Feature Value NNP NN NNS VBG VBZ
unknown word yes 0.05 0.02 0.02 0.005 0.005

no 0.95 0.98 0.98 0.995 0.995
capitalized yes 0.95 0.10 0.10 0.005 0.005

no 0.05 0.90 0.90 0.995 0.995
ending -s 0.05 0.01 0.98 0.00 0.99

-ing 0.01 0.01 0.00 1.00 0.00
-tion 0.05 0.10 0.00 0.00 0.00
other 0.89 0.88 0.02 0.00 0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging.
For example, P(unknown word = yes|NNP) = 0.05 and P(ending = -ing|VBG) =
1.0.

make inferences about a word’s possible parts of speech. For example,
words ending in -ed are likely to be past tense forms or past participles.
Weischedel et al. (1993) estimate word generation probabilities based on
three types of information: how likely it is that a tag will generate an
unknown word (this probability is zero for some tags, for example PN,
personal pronouns); the likelihood of generation of uppercase/lowercase
words; and the generation of hyphens and particular suffixes:

P(wl|tj) = 1
Z
P(unknown word|tj)P(capitalized|tj)P(endings/hyph|tj)

where Z is a normalization constant. This model reduces the error rate
for unknown words from more than 40% to less than 20%.

Charniak et al. (1993) propose an alternative model which depends
both on roots and suffixes and can select from multiple morphological
analyses (for example, do-es (a verb form) vs. doe-s (the plural of a noun)).

Most work on unknown words assumes independence between fea-
tures. Independence is often a bad assumption. For example, capitalized
words are more likely to be unknown, so the features ‘unknown word’
and ‘capitalized’ in Weischedel et al.’s model are not really independent.
Franz (1996; 1997) develops a model for unknown words that takes de-
pendence into account. He proposes a loglinear model that models mainmain effects

effects (the effects of a particular feature on its own) as well as interac-interactions

tions (such as the dependence between ‘unknown word’ and ‘capitalized’).
For an approach based on Bayesian inference see Samuelsson (1993).

p

i i

10.2 Markov Model Taggers 353

Exercise 10.9 [«]

Given the (made-up) data in table 10.5 and Weischedel et al.’s model for un-
known words, compute P(fenestration|tk), P(fenestrates|tk), P(palladio|tk),
P(palladios|tk), P(Palladio|tk), P(Palladios|tk), and P(guesstimating|tk). As-
sume that NNP, NN, NNS, VBG, and VBZ are the only possible tags. Do the
estimates seem intuitively correct? What additional features could be used for
better results?

Exercise 10.10 [««]

Compute better estimates of the probabilities in table 10.5 from the data on the
web site.

Trigram taggers

The basic Markov Model tagger can be extended in several ways. In the
model developed so far, we make predictions based on the preceding tag.
This is called a bigram tagger because the basic unit we consider is thebigram tagger

preceding tag and the current tag. We can think of tagging as selecting
the most probable bigram (modulo word probabilities).

We would expect more accurate predictions if more context is taken
into account. For example, the tag RB (adverb) can precede both a verb
in the past tense (VBD) and a past participle (VBN). So a word sequence
like clearly marked is inherently ambiguous in a Markov Model with a
‘memory’ that reaches only one tag back. A trigram tagger has a two-trigram tagger

tag memory and lets us disambiguate more cases. For example, is clearly
marked and he clearly marked suggest VBN and VBD, respectively, be-
cause the trigram “BEZ RB VBN” is more frequent than the trigram “BEZ
RB VBD” and because “PN RB VBD” is more frequent than “PN RB VBN.”
A trigram tagger was described in (Church 1988), which is probably the
most cited publication on tagging and got many NLP researchers inter-
ested in the problem of part-of-speech tagging.

Interpolation and variable memory

Conditioning predictions on a longer history is not always a good idea.
For example, there are usually no short-distance syntactic dependen-
cies across commas. So knowing what part of speech occurred before
a comma does not help in determining the correct part of speech af-
ter the comma. In fact, a trigram tagger may make worse predictions
than a bigram tagger in such cases because of sparse data problems –

p

i i

354 10 Part-of-Speech Tagging

trigram transition probabilities are estimated based on rarer events, so
the chances of getting a bad estimate are higher.

One way to address this problem is linear interpolation of unigram,
bigram, and trigram probabilities:

P(ti|t1,i−1) = λ1P1(ti)+ λ2P2(ti|ti−1)+ λ3P3(ti|ti−1,i−2)

This method of linear interpolation was covered in chapter 6 and how to
estimate the parameters λi using an HMM was covered in chapter 9.

Some researchers have selectively augmented a low-order Markov
model based on error analysis and prior linguistic knowledge. For ex-
ample, Kupiec (1992b) observed that a first order HMM systematically
mistagged the sequence “the bottom of” as “AT JJ IN.” He then extended
the order-one model with a special network for this construction so that
the improbability of a preposition after a “AT JJ” sequence could be
learned. This method amounts to manually selecting higher-order states
for cases where an order-one memory is not sufficient.

A related method is the Variable Memory Markov Model (VMMM)
(Schütze and Singer 1994). VMMMs have states of mixed “length” instead
of the fixed-length states of bigram and trigram taggers. A VMMM tagger
can go from a state that remembers the last two tags (corresponding to
a trigram) to a state that remembers the last three tags (corresponding
to a fourgram) and then to a state without memory (corresponding to a
unigram). The number of symbols to remember for a particular sequence
is determined in training based on an information-theoretic criterion. In
contrast to linear interpolation, VMMMs condition the length of mem-
ory used for prediction on the current sequence instead of using a fixed
weighted sum for all sequences. VMMMs are built top-down by splitting
states. An alternative is to build this type of model bottom-up by way of
model merging (Stolcke and Omohundro 1994a; Brants 1998).model merging

The hierarchical non-emitting Markov model is an even more powerful
model that was proposed by Ristad and Thomas (1997). By introduc-
ing non-emitting transitions (transitions between states that do not emit
a word or, equivalently, emit the empty word ε), this model can store
dependencies between states over arbitrarily long distances.

Smoothing

Linear interpolation is a way of smoothing estimates. We can use any of
the other estimation methods discussed in chapter 6 for smoothing. For

p

i i

10.2 Markov Model Taggers 355

example, Charniak et al. (1993) use a method that is similar to Adding
One (but note that, in general, it does not give a proper probability distri-
bution . . .):

P(tj |tj+1) = (1− ε)C(t
j−1, tj)

C(tj−1)
+ ε

Smoothing the word generation probabilities is more important than
smoothing the transition probabilities since there are many rare words
that will not occur in the training corpus. Here too, Adding One has been
used (Church 1988). Church added 1 to the count of all parts of speech
listed in the dictionary for a particular word, thus guaranteeing a non-
zero probability for all parts of speech tj that are listed as possible for
wl :

P(tj |wl) = C(t
j ,wl)+ 1

C(wl)+ Kl
where Kl is the number of possible parts of speech of wl .

Exercise 10.11 [«]

Recompute the probability estimates in exercises 10.4 and 10.5 with Adding One.

Reversibility

We have described a Markov Model that ‘decodes’ (or tags) from left to
right. It turns out that decoding from right to left is equivalent. The
following derivation shows why this is the case:

P(t1,n) = P(t1)P(t1,2|t1)P(t2,3|t2) . . . P(tn−1,n|tn−1)(10.9)

= P(t1)P(t1,2)P(t2,3) . . . P(tn−1,n)
P(t1)P(t2) . . . P(tn−1)

= P(tn)P(t1,2|t2)P(t2,3|t3) . . . P(tn−1,n|tn)
Assuming that the probability of the initial and last states are the same
(which is the case in tagging since both correspond to the tag PERIOD),
‘forward’ and ‘backward’ probability are the same. So it doesn’t matter
which direction we choose. The tagger described here moves from left to
right. Church’s tagger takes the opposite direction.

Maximum Likelihood: Sequence vs. tag by tag

As we pointed out in chapter 9, the Viterbi Algorithm finds the most
likely sequence of states (or tags). That is, we maximize P(t1,n|w1,n). We

p

i i

356 10 Part-of-Speech Tagging

could also maximize P(ti|w1,n) for all i which amounts to summing over
different tag sequences.

As an example consider sentence (10.10):

(10.10) Time flies like an arrow.

Let us assume that, according to the transition probabilities we’ve gath-
ered from our training corpus, (10.11a) and (10.11b) are likely taggings
(assume probability 0.01), (10.11c) is an unlikely tagging (assume proba-
bility 0.001), and that (10.11d) is impossible because transition probabil-
ity P(VB|VBZ) is 0.0.

(10.11) a. NN VBZ RB AT NN. P(·) = 0.01

b. NN NNS VB AT NN. P(·) = 0.01

c. NN NNS RB AT NN. P(·) = 0.001

d. NN VBZ VB AT NN. P(·) = 0

For this example, we will obtain taggings (10.11a) and (10.11b) as the
equally most likely sequences P(t1,n|w1,n). But we will obtain (10.11c) if
we maximize P(ti|w1,n) for all i. This is because P(X2 = NNS|Time flies
like an arrow) = 0.011 = P(b)+ P(c) > 0.01 = P(a) = P(X2 = VBZ|Time
flies like an arrow) and P(X3 = RB|Time flies like an arrow) = 0.011 =
P(a)+ P(c) > 0.01 = P(b) = P(X3 = VB|Time flies like an arrow).

Experiments conducted by Merialdo (1994: 164) suggest that there is
no large difference in accuracy between maximizing the likelihood of in-
dividual tags and maximizing the likelihood of the sequence. Intuitively,
it is fairly easy to see why this might be. With Viterbi, the tag transi-
tions are more likely to be sensible, but if something goes wrong, we will
sometimes get a sequence of several tags wrong; whereas with tag by tag,
one error does not affect the tagging of other words, and so one is more
likely to get occasional dispersed errors. In practice, since incoherent se-
quences (like “NN NNS RB AT NN” above) are not very useful, the Viterbi
algorithm is the preferred method for tagging with Markov Models.

10.3 Hidden Markov Model Taggers

Markov Model taggers work well when we have a large tagged training
set. Often this is not the case. We may want to tag a text from a special-
ized domain with word generation probabilities that are different from

p

i i

10.3 Hidden Markov Model Taggers 357

those in available training texts. Or we may want to tag text in a foreign
language for which training corpora do not exist at all.

10.3.1 Applying HMMs to POS tagging

If we have no training data, we can use an HMM to learn the regularities
of tag sequences. Recall that an HMM as introduced in chapter 9 consists
of the following elements:

� a set of states

� an output alphabet

� initial state probabilities

� state transition probabilities

� symbol emission probabilities

As in the case of the Visible Markov Model, the states correspond to tags.
The output alphabet consists either of the words in the dictionary or
classes of words as we will see in a moment.

We could randomly initialize all parameters of the HMM, but this would
leave the tagging problem too unconstrained. Usually dictionary infor-
mation is used to constrain the model parameters. If the output alphabet
consists of words, we set word generation (= symbol emission) proba-
bilities to zero if the corresponding word-tag pair is not listed in the
dictionary (e.g., JJ is not listed as a possible part of speech for book). Al-
ternatively, we can group words into word equivalence classes so that all
words that allow the same set of tags are in the same class. For example,
we could group bottom and top into the class JJ-NN if both are listed with
just two parts of speech, JJ and NN. The first method was proposed by
Jelinek (1985), the second by Kupiec (1992b). We write bj.l for the prob-
ability that word (or word class) l is emitted by tag j . This means that
as in the case of the Visible Markov Model the ‘output’ of a tag does not
depend on which tag (= state) is next.

� Jelinek’s method.

bj.l =
b?j.lC(w

l)∑
wm b?j.mC(wm)

p

i i

358 10 Part-of-Speech Tagging

where the sum is over all words wm in the dictionary and

b?j.l =
{

0 if tj is not a part of speech allowed for wl
1

T(wl) otherwise

where T(wj) is the number of tags allowed for wj .

Jelinek’s method amounts to initializing the HMM with the maximum
likelihood estimates for P(wk|ti), assuming that words occur equally
likely with each of their possible tags.

� Kupiec’s method. First, group all words with the same possible parts
of speech into ‘metawords’ uL. Here L is a subset of the integers from
1 to T , where T is the number of different tags in the tag set:

uL = {wl|j ∈ L↔ tj is allowed for wl} ∀L ⊆ {1, . . . , T}

For example, if NN = t5 and JJ = t8 then u{5,8} will contain all words
for which the dictionary allows tags NN and JJ and no other tags.

We then treat these metawords uL the same way we treated words in
Jelinek’s method:2

bj.L =
b?j.LC(uL)∑
uL′ b

?
j.L′C(uL′)

where C(uL′) is the number of occurrences of words from uL′ , the sum
in the denominator is over all metawords uL′ , and

b?j.L =
{

0 if j ∉ L
1
|L| otherwise

where |L| is the number of indices in L.

The advantage of Kupiec’s method is that we don’t fine-tune a sepa-
rate set of parameters for each word. By introducing equivalence classes,
the total number of parameters is reduced substantially and this smaller
set can be estimated more reliably. This advantage could turn into a
disadvantage if there is enough training material to accurately estimate
parameters word by word as Jelinek’s method does. Some experiments

2. The actual initialization used by Kupiec is a variant of what we present here. We have
tried to make the similarity between Jelinek’s and Kupiec’s methods more transparent.

p

i i

10.3 Hidden Markov Model Taggers 359

D0 maximum likelihood estimates from a tagged training corpus
D1 correct ordering only of lexical probabilities
D2 lexical probabilities proportional to overall tag probabilities
D3 equal lexical probabilities for all tags admissible for a word

T0 maximum likelihood estimates from a tagged training corpus
T1 equal probabilities for all transitions

Table 10.6 Initialization of the parameters of an HMM. D0, D1, D2, and D3 are
initializations of the lexicon, and T0 and T1 are initializations of tag transitions
investigated by Elworthy.

conducted by Merialdo (1994) suggest that unsupervised estimation of
a separate set of parameters for each word introduces error. This ar-
gument does not apply to frequent words, however. Kupiec therefore
does not include the 100 most frequent words in equivalence classes, but
treats them as separate one-word classes.

Training. Once initialization is completed, the Hidden Markov Model is
trained using the Forward-Backward algorithm as described in chapter 9.

Tagging. As we remarked earlier, the difference between VMM tagging
and HMM tagging is in how we train the model, not in how we tag. The
formal object we end up with after training is a Hidden Markov model
in both cases. For this reason, there is no difference when we apply the
model in tagging. We use the Viterbi algorithm in exactly the same man-
ner for Hidden Markov Model tagging as we do for Visible Markov Model
tagging.

10.3.2 The effect of initialization on HMM training

The ‘clean’ (i.e., theoretically well-founded) way of stopping training with
the Forward-Backward algorithm is the log likelihood criterion (stop when
the log likelihood no longer improves). However, it has been shown that,
for tagging, this criterion often results in overtraining. This issue was
investigated in detail by Elworthy (1994). He trained HMMs from the dif-
ferent starting conditions in table 10.6. The combination of D0 and T0
corresponds to Visible Markov Model training as we described it at the
beginning of this chapter. D1 orders the lexical probabilities correctly

p

i i

360 10 Part-of-Speech Tagging

(for example, the fact that the tag VB is more likely for make than the
tag NN), but the absolute values of the probabilities are randomized. D2
gives the same ordering of parts of speech to all words (for example, for
the most frequent tag tj , we would have P(w |tj) is greater than P(w |tk)
for all other tags tk). D3 preserves only information about which tags are
possible for a word, the ordering is not necessarily correct. T1 initializes
the transition probabilities to roughly equal numbers.3

Elworthy (1994) finds three different patterns of training for different
combinations of initial conditions. In the classical pattern, performanceclassical

on the test set improves steadily with each training iteration. In this case
the log likelihood criterion for stopping is appropriate. In the early max-early maximum

imum pattern, performance improves for a number of iterations (most
often for two or three), but then decreases. In the initial maximum pat-initial maximum

tern, the very first iteration degrades performance.
The typical scenario for applying HMMs is that a dictionary is available,

but no tagged corpus as training data (conditions D3 (maybe D2) and
T1). For this scenario, training follows the early maximum pattern. That
means that we have to be careful in practice not to overtrain. One way
to achieve this is to test the tagger on a held-out validation set after each
iteration and stop training when performance decreases.

Elworthy also confirms Merialdo’s finding that the Forward-Backward
algorithm degrades performance when a tagged training corpus (of even
moderate size) is available. That is, if we initialize according to D0 and
T0, then we get the initial maximum pattern. However, an interesting
twist is that if training and test corpus are very different, then a few
iterations do improve performance (the early maximum pattern). This is
a case that occurs frequently in practice since we are often confronted
with types of text for which we do not have similar tagged training text.

In summary, if there is a sufficiently large training text that is fairly
similar to the intended text of application, then we should use Visible
Markov Models. If there is no training text available or training and test
text are very different, but we have at least some lexical information, then
we should run the Forward-Backward algorithm for a few iterations. Only
when we have no lexical information at all, should we train for a larger
number of iterations, ten or more. But we cannot expect good perfor-

3. Exactly identical probabilities are generally bad as a starting condition for the EM algo-
rithm since they often correspond to suboptimal local optima that can easily be avoided.
We assume that D3 and T1 refer to approximately equal probabilities that are slightly
perturbed to avoid ties.

p

i i

10.4 Transformation-Based Learning of Tags 361

mance in this case. This failure is not a defect in the forward-backward
algorithm, but reflects the fact that the forward-backward algorithm is
only maximizing the likelihood of the training data by adjusting the pa-
rameters of an HMM. The changes it is using to reduce the cross entropy
may not be in accord with our true objective function – getting words
assigned tags according to some predefined tag set. Therefore it is not
capable of optimizing performance on that task.

Exercise 10.12 [«]

When introducing HMM tagging above, we said that random initialization of the
model parameters (without dictionary information) is not a useful starting point
for the EM algorithm. Why is this the case? What would happen if we just had
the following eight parts of speech: preposition, verb, adverb, adjective, noun,
article, conjunction, and auxiliary; and randomly initialized the HMM. Hint: The
EM algorithm will concentrate on high-frequency events which have the highest
impact on log likelihood (the quantity maximized).

How does this initialization differ from D3?

Exercise 10.13 [«]

The EM algorithm improves the log likelihood of the model given the data in
each iteration. How is this compatible with Elworthy’s and Merialdo’s results
that tagging accuracy often decreases with further training?

Exercise 10.14 [«]

The crucial bit of prior knowledge that is captured by both Jelinek’s and Kupiec’s
methods of parameter initialization is which of the word generation probabilities
should be zero and which should not. The implicit assumption here is that
a generation probability set to zero initially will remain zero during training.
Show that this is the case referring to the introduction of the Forward-Backward
algorithm in chapter 9.

Exercise 10.15 [««]

Get the Xerox tagger (see pointer on website) and tag texts from the web site.

10.4 Transformation-Based Learning of Tags

In our description of Markov models we have stressed at several points
that the Markov assumptions are too crude for many properties of nat-
ural language syntax. The question arises why we do not adopt more
sophisticated models. We could condition tags on preceding words (not
just preceding tags) or we could use more context than trigram taggers
by going to fourgram or even higher order taggers.

p

i i

362 10 Part-of-Speech Tagging

This approach is not feasible because of the large number of param-
eters we would need. Even with trigram taggers, we had to smooth
and interpolate because maximum likelihood estimates were not robust
enough. This problem would be exacerbated with models more complex
than the Markov models introduced so far, especially if we wanted to
condition transition probabilities on words.

We will now turn to transformation-based tagging. One of the strengths
of this method is that it can exploit a wider range of lexical and syn-
tactic regularities. In particular, tags can be conditioned on words and
on more context. Transformation-based tagging encodes complex in-
terdependencies between words and tags by selecting and sequencing
transformations that transform an initial imperfect tagging into one with
fewer errors. The training of a transformation-based tagger requires an
order of magnitude fewer decisions than estimating the large number of
parameters of a Markov model.

Transformation-based tagging has two key components:

� a specification of which ‘error-correcting’ transformations are admis-
sible

� the learning algorithm

As input data, we need a tagged corpus and a dictionary. We first tag
each word in the training corpus with its most frequent tag – that is what
we need the dictionary for. The learning algorithm then constructs a
ranked list of transformations that transforms the initial tagging into a
tagging that is close to correct. This ranked list can be used to tag new
text, by again initially choosing each word’s most frequent tag, and then
applying the transformations. We will now describe these components in
more detail.

10.4.1 Transformations

A transformation consists of two parts, a triggering environment and a
rewrite rule. Rewrite rules have the form t1 → t2, meaning “replace tag
t1 by tag t2.” Brill (1995a) allows the triggering environments shown in
table 10.7. Here the asterisk is the site of the potential rewriting and the
boxes denote the locations where a trigger will be sought. For example,
line 5 refers to the triggering environment “Tag tj occurs in one of the
three previous positions.”

p

i i

10.4 Transformation-Based Learning of Tags 363

Schema ti−3 ti−2 ti−1 ti ti+1 ti+1 ti+3

1 ∗
2 ∗
3 ∗
4 ∗
5 ∗
6 ∗
7 ∗
8 ∗
9 ∗

Table 10.7 Triggering environments in Brill’s transformation-based tagger. Ex-
amples: Line 5 refers to the triggering environment “Tag tj occurs in one of the
three previous positions”; Line 9 refers to the triggering environment “Tag tj

occurs two positions earlier and tag tk occurs in the following position.”

Source tag Target tag Triggering environment

NN VB previous tag is TO
VBP VB one of the previous three tags is MD
JJR RBR next tag is JJ
VBP VB one of the previous two words is n’t

Table 10.8 Examples of some transformations learned in transformation-based
tagging.

Examples of the type of transformations that are learned given these
triggering environments are shown in table 10.8. The first transforma-
tion specifies that nouns should be retagged as verbs after the tag TO.
Later transformations with more specific triggers will switch some words
back to NN (e.g., school in go to school). The second transformation in
table 10.8 applies to verbs with identical base and past tense forms like
cut and put. A preceding modal makes it unlikely that they are used in
the past tense. An example for the third transformation is the retagging
of more in more valuable player.

The first three transformations in table 10.8 are triggered by tags. The
fourth one is triggered by a word. (In the Penn Treebank words like don’t
and shouldn’t are split up into a modal and n’t.) Similar to the second
transformation, this one also changes a past tense form to a base form.
A preceding n’t makes a base form more likely than a past tense form.

p

i i

364 10 Part-of-Speech Tagging

1 C0 := corpus with each word tagged with its most frequent tag
3 for k := 0 step 1 do
4 v := the transformation ui that minimizes E(ui(Ck))
6 if (E(Ck)− E(v(Ck))) < ε then break fi
7 Ck+1 := v(Ck)
8 τk+1 := v
9 end

10 Output sequence: τ1, . . . , τk

Figure 10.3 The learning algorithm for transformation-based tagging. Ci
refers to the tagging of the corpus in iteration i. E is the error rate.

Word-triggered environments can also be conditioned on the current
word and on a combination of words and tags (“the current word is wi

and the following tag is tj”).
There is also a third type of transformation in addition to tag-triggered

and word-triggered transformations. Morphology-triggered transforma-
tions offer an elegant way of integrating the handling of unknown words
into the general tagging formalism. Initially, unknown words are tagged
as proper nouns (NNP) if capitalized, as common nouns (NN) otherwise.
Then morphology-triggered transformations like “Replace NN by NNS if
the unknown word’s suffix is -s” correct errors. These transformations
are learned by the same learning algorithm as the tagging transforma-
tions proper. We will now describe this learning algorithm.

10.4.2 The learning algorithm

The learning algorithm of transformation-based tagging selects the best
transformations and determines their order of application. It works as
shown in figure 10.3.

Initially we tag each word with its most frequent tag. In each iteration
of the loop, we choose the transformation that reduces the error rate
most (line 4), where the error E(Ck) is measured as the number of words
that are mistagged in tagged corpus Ck. We stop when there is no trans-
formation left that reduces the error rate by more than a prespecified
threshold ε. This procedure is a greedy search for the optimal sequence
of transformations.

We also have to make two decisions about how to apply the transfor-

p

i i

10.4 Transformation-Based Learning of Tags 365

mations, that is, how exactly to compute τi(Ck). First, we are going to
stipulate that transformations are applied from left to right to the input.
Secondly, we have to decide whether transformations should have an im-
mediate or delayed effect. In the case of immediate effect, applications
of the same transformation can influence each other. Brill implements
delayed-effect transformations, which are simpler. This means that a
transformation “A → B if the preceding tag is A” will transform AAAA
to ABBB. AAAA would be transformed to ABAB if transformations took
effect immediately.

An interesting twist on this tagging model is to use it for unsuper-
vised learning as an alternative to HMM tagging. As with HMM tagging,
the only information available in unsupervised tagging is which tags are
allowable for each word. We can then take advantage of the fact that
many words only have one tag and use that as the scoring function for
selecting transformations. For example, we can infer that the tagging of
can in The can is open as NN is correct if most unambiguous words in
the environment “AT BEZ” are nouns with this tag. Brill (1995b) de-
scribes a system based on this idea that achieves tagging accuracies of
up to 95.6%, a remarkable result for an unsupervised method. What is
particularly interesting is that there is no overtraining – in sharp contrast
to HMMs which are very prone to overtraining as we saw above. This is a
point that we will return to presently.

10.4.3 Relation to other models

Decision trees

Transformation-based learning bears some similarity to decision trees
(see section 16.1). We can view a decision tree as a mechanism that labels
all leaves that are dominated by a node with the majority class label of
that node. As we descend the tree we relabel the leaves of a child node
if its label differs from that of the parent node. This way of looking
at a decision tree shows the similarity to transformation-based learning
where we also go through a series of relabelings, working on smaller and
smaller subsets of the data.

In principle, transformation-based learning is strictly more powerful
than decision trees as shown by Brill (1995a). That is, there exist clas-
sification tasks that can be solved using transformation-based learning
that cannot be solved using decision trees. However, it is not clear that

p

i i

366 10 Part-of-Speech Tagging

this ‘extra power’ of transformation-based learning is used in NLP appli-
cations.

The main practical difference between the two methods is that the
training data are split at each node in a decision tree and that we ap-
ply a different sequence of ‘transformations’ for each node (the sequence
corresponding to the decisions on the path from the root to that node). In
transformation-based learning, each transformation in the learned trans-
formation list is applied to all the data (leading to a rewriting when the
triggering environment is met). As a result, we can directly minimize on
the figure of merit that we are most interested in (number of tagging er-
rors in the case of tagging) as opposed to indirect measures like entropy
that are used for HMMs and decision trees. If we directly minimized tag-
ging errors in decision tree learning, then it would be easy to achieve
100% accuracy for each leaf node. But performance on new data would be
poor because each leaf node would be formed based on arbitrary proper-
ties of the training set that don’t generalize. Transformation-based learn-
ing seems to be surprisingly immune to this form of overfitting (Ramshaw
and Marcus 1994). This can be partially explained by the fact that we
always learn on the whole data set.

One price we pay for this robustness is that the space of transforma-
tion sequences we have to search is huge. A naive implementation of
transformation-based learning will therefore be quite inefficient. How-
ever, there are ways of searching the space more intelligently and effi-
ciently (Brill 1995a).

Probabilistic models in general

In comparison to probabilistic models (including decision trees), trans-
formation based learning does not make the battery of standard methods
available that probability theory provides. For example, no extra work is
necessary in a probabilistic model for a ‘k-best’ tagging – a tagging mod-
ule that passes a number of tagging hypotheses with probabilities on to
the next module downstream (such as the parser).

It is possible to extend transformation-based tagging to ‘k-best’ tagging
by allowing rules of the form “add tag A to B if . . . ” so that some words
will be tagged with multiple tags. However, the problem remains that we
don’t have an assessment of how likely each of the tags is. The first tag
could be 100 times more likely than the next best one in one situation

p

i i

10.4 Transformation-Based Learning of Tags 367

and all tags could be equally likely in another situation. This type of
knowledge could be critical for constructing a parse.

An important characteristic of learning methods is the way prior know-
ledge can be encoded. Transformation-based tagging and probabilistic
approaches have different strengths here. The specification of templates
for the most appropriate triggering environments offers a powerful way
of biasing the learner towards good generalizations in transformation-
based learning. The templates in table 10.7 seem obvious. But they
seem obvious only because of what we know about syntactic regularities.
A large number of other templates that are obviously inappropriate are
conceivable (e.g., “the previous even position in the sentence is a noun”).

In contrast, the probabilistic Markov models make it easier to encode
precisely what the prior likelihood for the different tags of a word are (for
example, the most likely tag is ten times as likely or just one and a half
times more likely). The only piece of knowledge we can give the learner
in transformation-based tagging is which tag is most likely.

10.4.4 Automata

The reader may wonder why we describe transformation-based tagging
in this textbook even though we said we would not cover rule-oriented
approaches. While transformation-based tagging has a rule component,
it also has a quantitative component. We are somewhat loosely using
Statistical NLP in the sense of any corpus-based or quantitative method
that uses counts from corpora, not just those that use the framework of
probability theory. Transformation-based tagging clearly is a Statistical
NLP method in this sense because transformations are selected based on
a quantitative criterion.

However, the quantitative evaluation of transformations (by how much
they improve the error rate) only occurs during training. Once learning is
complete, transformation-based tagging is purely symbolic. That means
that a transformation-based tagger can be converted into another sym-
bolic object that is equivalent in terms of tagging performance, but has
other advantageous properties like time efficiency.

This is the approach taken by Roche and Schabes (1995). They convert
a transformation-based tagger into an equivalent finite state transducer ,finite state

transducer a finite-state automaton that has a pair of symbols on each arc, one input
symbol and one output symbol (in some cases several symbols can be
output when an arc is traversed). A finite-state transducer passes over an

p

i i

368 10 Part-of-Speech Tagging

input string and converts it into an output string by consuming the input
symbols on the arcs it traverses and outputting the output symbols on
the same arcs.

The construction algorithm proposed by Roche and Schabes has four
steps. First, each transformation is converted into a finite-state trans-
ducer. Second, the transducer is converted into its local extension. Simplylocal extension

put, the local extension f2 of a transducer f1 is constructed such that run-
ning f2 on an input string in one pass has the same effect as running f1
on each position of the input string. This step takes care of cases like the
following. Suppose we have a transducer that implements the transfor-
mation “replace A by B if one of the two preceding symbols is C.” This
transducer will have one arc with the input symbol A and the output sym-
bol B. So for an input sequence like “CAA” we have to run it twice (at the
second and third position) to correctly transduce “CAA” to “CBB.” The
local extension is constructed such that one pass will do this conversion.

In the third step, we compose all transducers into one single trans-
ducer whose effect is the same as running the individual transducers in
sequence. This single transducer is generally non-deterministic. When-
ever this transducer has to keep an event (like “C occurred at position i”)
in memory it will do this by launching two paths one assuming that a
tag affected by a preceding C will occur later, one assuming that no
such tag will occur. The appropriate path will be pursued further, the
inappropriate path will be ‘killed off’ at the appropriate position in the
string. This type of indeterminism is not efficient, so the fourth step is to
convert the non-deterministic transducer into a deterministic one. This
is not possible in general since non-deterministic transducers can keep
events in memory for an arbitrary long sequence, which cannot be done
by deterministic transducers. However, Roche and Schabes show that the
transformations used in transformation-based tagging do not give rise
to transducers with this property. We can therefore always transform a
transformation-based tagger into a deterministic finite-state transducer.

The great advantage of a deterministic finite-state transducer is speed.
A transformation-based tagger can take RKn elementary steps to tag a
text where R is the number of transformations, K is the length of the
triggering environment, and n is the length of the input text (Roche and
Schabes 1995: 231). In contrast, finite-state transducers are linear in the
length of the input text with a much smaller constant. Basically, we only
hop from one state to the next as we read a word, look up its most likely
tag (the initial state) and output the correct tag. This makes speeds of

p

i i

10.4 Transformation-Based Learning of Tags 369

several tens of thousands of words per second possible. The speed of
Markov model taggers can be an order of magnitude lower. This means
that transducer-based tagging adds a very small overhead to operations
like reading the input text from disk and its time demands are likely to
be negligible compared to subsequent processing steps like parsing or
message understanding.

There has also been work on transforming Hidden Markov models into
finite state transducers (Kempe 1997). But, in this case, we cannot achieve
complete equivalence since automata cannot perfectly mimic the floating
point operations that need to be computed for the Viterbi algorithm.

10.4.5 Summary

The great advantage of transformation-based tagging is that it can condi-
tion tagging decisions on a richer set of events than the probabilistic
models we looked at earlier. For example, information from the left
and right can be used simultaneously and individual words (not just
their tags) can influence the tagging of neighboring words. One rea-
son transformation-based tagging can accommodate this richer set of
triggering environments is probably that it primarily deals with binary
information, which is less complex than probabilities.

It has also been claimed that transformations are easier to understand
and modify than the transition and word generation probabilities in prob-
abilistic tagging. However, it can be quite hard to foresee the effect of
changing one transformation in a sequence, since complex interactions
can occur when several dozen transformations are applied in sequence
and each depends on the output of the previous one.

Work on the theoretical foundations of transformation-based tagging
is still on-going. For example, the fact that transformation-based learning
seems remarkably resistant to overfitting is so far an empirical result that
is not well understood.

Even so, both learning and tagging are remarkably simple and intuitive
in transformation-based tagging. Whether this simplicity is the principal
criterion for choosing between a transformation-based or a probabilis-
tic tagger, or whether the strength of probabilistic models in dealing with
uncertainty and certain types of prior knowledge are more important con-
siderations will depend on many factors such as what type of system the
tagger is a component of and whether those working on this system are
more comfortable with rule-based or probabilistic approaches.

p

i i

370 10 Part-of-Speech Tagging

Apart from tagging, transformation-based learning has also been ap-
plied to parsing (Brill 1993b), prepositional phrase attachment (Brill and
Resnik 1994), and word sense disambiguation (Dini et al. 1998).

Exercise 10.16 [«]

Transformation-based learning is a form of greedy search. Is greedy search ex-
pected to find the optimal sequence of transformations? What would be alterna-
tives?

Exercise 10.17 [«]

Most of the triggering environments in Brill (1995a) refer to preceding context.
Why? Would you expect the same tendency for languages other than English?

Exercise 10.18 [«]

The set of possible triggering environments for words and tags is different in
(Brill 1995a). For example, “one of the three preceding tags is X” is admissible as
a triggering environment, but not “one of the three preceding words is X.” What
might be the reason for this difference? Consider the differences between the
sizes of the search spaces for words and tags.

Exercise 10.19 [«]

Apart from choosing the most frequent tag as initialization, we can also assign
all words to the same tag (say, NN) or use the output of another tagger which
the transformation-based tagger can then improve. Discuss relative advantages
of different initializations.

Exercise 10.20 [««]

Get the Brill tagger (see pointer on website) and tag texts from the website.

10.5 Other Methods, Other Languages

10.5.1 Other approaches to tagging

Tagging has been one of the most active areas of research in NLP in the
last ten years. We were only able to cover three of the most important ap-
proaches here. Many other probabilistic and quantitative methods have
been applied to tagging, including all the methods we cover in chap-
ter 16: neural networks (Benello et al. 1989), decision trees (Schmid 1994),
memory-based learning (or k nearest neighbor approaches) (Daelemans
et al. 1996), and maximum entropy models (Ratnaparkhi 1996).4

4. Ratnaparkhi’s tagger, one of the highest performing statistical taggers, is publicly avail-
able. See the website.

p

i i

10.6 Tagging Accuracy and Uses of Taggers 371

There has also been work on how to construct a tagged corpus with
a minimum of human effort (Brill et al. 1990). This problem poses itself
when a language with as yet no tagged training corpus needs to be tackled
or when in the case of already tagged languages we encounter text that is
so different as to make existing tagged corpora useless.

Finally, some researchers have explored ways of constructing a tag set
automatically in order to create syntactic categories that are appropri-
ate for a language or a particular text sort (Schütze 1995; McMahon and
Smith 1996).

10.5.2 Languages other than English

We have only covered part-of-speech tagging of English here. It turns
out that English is a particularly suitable language for methods that try
to infer a word’s grammatical category from its position in a sequence
of words. In many other languages, word order is much freer, and the
surrounding words will contribute much less information about part of
speech. However, in most such languages, the rich inflections of a word
contribute more information about part of speech than happens in En-
glish. A full evaluation of taggers as useful preprocessors for high-level
multilingual NLP tasks will only be possible after sufficient experimental
results from a wide range of languages are available.

Despite these reservations, there exist now quite a number of tagging
studies, at least for European languages. These studies suggest that the
accuracy for other languages is comparable with that for English (Der-
matas and Kokkinakis 1995; Kempe 1997), although it is hard to make
such comparisons due to the incomparability of tag sets (tag sets are not
universal, but all encode the particular functional categories of individual
languages).

10.6 Tagging Accuracy and Uses of Taggers

10.6.1 Tagging accuracy

Accuracy numbers currently reported for tagging are most often in the
range of 95% to 97%, when calculated over all words. Some authors give
accuracy for ambiguous words only, in which case the accuracy figures
are of course lower. However, performance depends considerably on fac-
tors such as the following.

p

i i

372 10 Part-of-Speech Tagging

� The amount of training data available. In general, the more the better.

� The tag set. Normally, the larger the tag set, the more potential am-
biguity, and the harder the tagging task (but see the discussion in sec-
tion 4.3.2). For example, some tag sets make a distinction between the
preposition to and the infinitive marker to, and some don’t. Using the
latter tag set, one can’t tag to wrongly.

� The difference between training corpus and dictionary on the one
hand and the corpus of application on the other. If training and ap-
plication text are drawn from the same source (for example, the same
time period of a particular newspaper), then accuracy will be high. Nor-
mally the only results presented for taggers in research papers present
results from this situation. If the application text is from a later time
period, from a different source, or even from a different genre than the
training text (e.g., scientific text vs. newspaper text), then performance
can be poor.5

� Unknown words. A special case of the last point is coverage of the
dictionary. The occurrence of many unknown words will greatly de-
grade performance. The percentage of words not in the dictionary can
be very high when trying to tag material from some technical domain.

A change in any of these four conditions will impact tagging accuracy,
sometimes dramatically. If the training set is small, the tag set large,
the test corpus significantly different from the training corpus, or we are
confronted with a larger than expected number of unknown words, then
performance can be far below the performance range cited above. It is
important to stress that these types of external conditions often have a
stronger influence on performance than the choice of tagging method –
especially when differences between methods reported are on the order
of half a percent.

The influence of external factors also needs to be considered when
we evaluate the surprisingly high performance of a ‘dumb’ tagger which
always chooses a word’s most frequent tag. Such a tagger can get an ac-
curacy of about 90% in favorable conditions (Charniak et al. 1993). This
high number is less surprising when we learn that the dictionary that was
used in (Charniak et al. 1993) is based on the corpus of application, the

5. See Elworthy (1994) and Samuelsson and Voutilainen (1997) for experiments looking
at performance for different degrees of similarity to the training set.

p

i i

10.6 Tagging Accuracy and Uses of Taggers 373

Brown corpus. Considerable manual effort went into the resources that
make it now easy to determine what the most frequent tag for a word in
the Brown corpus is. So it is not surprising that a tagger exploiting this
dictionary information does well. The automatic tagger that was origi-
nally used to preprocess the Brown corpus only achieved 77% accuracy
(Greene and Rubin 1971). In part this was due to its non-probabilistic
nature, but in large part this was due to the fact that it could not rely
on a large dictionary giving the frequency with which words are used in
different parts of speech that was suitable for the corpus of application.

Even in cases where we have a good dictionary and the most-frequent-
tag strategy works well, it is still important how well a tagger does in
the range from 90% correct to 100% correct. For example, a tagger with
97% accuracy has a 63% chance of getting all tags in a 15-word sentence
right, compared to 74% for a tagger with 98% accuracy. So even small
improvements can make a significant difference in an application.

One of the best-performing tagging formalisms is non-quantitative:
EngCG (English Constraint Grammar), developed at the University ofEnglish Constraint

Grammar Helsinki. Samuelsson and Voutilainen (1997) show that it performs bet-
ter than Markov model taggers, especially if training and test corpora are
not from the same source.6 In EngCG, hand-written rules are compiled
into finite-state automata (Karlsson et al. 1995; Voutilainen 1995). The
basic idea is somewhat similar to transformation-based learning, except
that a human being (instead of an algorithm) iteratively modifies a set
of tagging rules so as to minimize the error rate. In each iteration, the
current rule set is run on the corpus and an attempt is made to mod-
ify the rules so that the most serious errors are handled correctly. This
methodology amounts to writing a small expert system for tagging. The
claim has been made that for somebody who is familiar with the method-
ology, writing this type of tagger takes no more effort than building an
HMM tagger (Chanod and Tapanainen 1995), though it could be argued
that the methodology for HMM tagging is more easily accessible.

We conclude our remarks on tagging accuracy by giving examples of
some of the most frequent errors. Table 10.9 shows some examples of
common error types reported by Kupiec (1992b). The example phrases
and fragments are all ambiguous, demonstrating that semantic context,

6. The accuracy figures for EngCG reported in the paper are better than 99% vs. better
than 95% for a Markov Model tagger, but comparison is difficult since some ambiguities
are not resolved by EngCG. EngCG returns a set of more than one tag in some cases.

p

i i

374 10 Part-of-Speech Tagging

Correct tag Tagging error Example
noun singular adjective an executive order
adjective adverb more important issues
preposition particle He ran up a big . . .
past tense past participle loan needed to meet
past participle past tense loan needed to meet

Table 10.9 Examples of frequent errors of probabilistic taggers.

or more syntactic context is necessary than a Markov model has access
to. Syntactically, the word executive could be an adjective as well as a
noun. The phrase more important issues could refer to a larger number
of important issues or to issues that are more important. The word up is
used as a preposition in running up a hill, as a particle in running up a
bill. Finally, depending on the embedding, needed can be a past participle
or a past tense form as the following two sentences from (Kupiec 1992b)
show:

(10.12) a. The loan needed to meet rising costs of health care.

b. They cannot now handle the loan needed to meet rising costs of health
care.

Table 10.10 shows a portion of a confusion matrix for the tagger de-confusion matrix

scribed in (Franz 1995). Each row shows the percentage of the time words
of a certain category were given different tags by the tagger. In a way the
results are unsurprising. The errors occur in the cases where multiple
class memberships are common. Particularly to be noted, however, is the
low accuracy of tagging particles, which are all word types that can also
act as prepositions. The distinction between particles and prepositions,
while real, is quite subtle, and some people feel that it is not made very
accurately even in hand-tagged corpora.7

10.6.2 Applications of tagging

The widespread interest in tagging is founded on the belief that many NLP

applications will benefit from syntactically disambiguated text. Given this

7. Hence, as we shall see in chapter 12, it is often ignored in the evaluation of probabilistic
parsers.

p

i i

10.6 Tagging Accuracy and Uses of Taggers 375

Correct Tags assigned by the tagger
Tags DT IN JJ NN RB RP VB VBG

DT 99.4 .3 .3
IN .4 97.5 1.5 .5
JJ .1 93.9 1.8 .9 .1 .4

NN 2.2 95.5 .2 .4
RB .2 2.4 2.2 .6 93.2 1.2
RP 24.7 1.1 12.6 61.5
VB .3 1.4 96.0

VBG 2.5 4.4 93.0

Table 10.10 A portion of a confusion matrix for part of speech tagging. For
each tag, a row of the table shows the percentage of the time that the tagger
assigned tokens of that category to different tags. (Thus, in the full confusion
matrix, the percentages in each row would add to 100%, but do not do so here,
because only a portion of the table is shown.). Based on (Franz 1995).

ultimate motivation for part-of-speech tagging, it is surprising that there
seem to be more papers on stand-alone tagging than on applying tagging
to a task of immediate interest. We summarize here the most important
applications for which taggers have been used.

Most applications require an additional step of processing after tag-
ging: partial parsing. Partial parsing can refer to various levels of detailpartial parsing

of syntactic analysis. The simplest partial parsers are limited to finding
the noun phrases of a sentence. More sophisticated approaches assign
grammatical functions to noun phrases (subject, direct object, indirect
object) and give partial information on attachments, for example, ‘this
noun phrase is attached to another (unspecified) phrase to the right’.

There is an elegant way of using Markov models for noun phrase
recognition (see (Church 1988), but a better description can be found
in (Abney 1996a)). We can take the output of the tagger and form a
sequence of tag bigrams. For example, NN VBZ RB AT NN would be
transformed into NN-VBZ VBZ-RB RB-AT AT-NN. This sequence of tag
bigrams is then tagged with five symbols: noun-phrase-beginning, noun-
phrase-end, noun-phrase-interior, noun-phrase-exterior (that is, this tag
bigram is not part of a noun phrase), and between-noun-phrases (that is,
at the position of this tag bigram there is a noun phrase immediately to
the right and a noun phrase immediately to the left). The noun phrases

p

i i

376 10 Part-of-Speech Tagging

are then all sequences of tags between a noun-phrase-beginning symbol
(or a between-noun-phrases symbol) and a noun-phrase-end symbol (or
a between-noun-phrases symbol), with noun-phrase-interior symbols in
between.

The best known approaches to partial parsing are Fidditch, developed
in the early eighties by Hindle (1994), and an approach called “parsing by
chunks” developed by Abney (1991). These two systems do not use tag-
gers because they predate the widespread availability of taggers. See also
(Grefenstette 1994). Two approaches that are more ambitious than cur-
rent partial parsers and attempt to bridge the gap between shallow and
full parsing are the XTAG system (Doran et al. 1994) and chunk tagging
(Brants and Skut 1998; Skut and Brants 1998).

In many systems that build a partial parser on top of a tagger, partial
parsing is accomplished by way of regular expression matching over the
output of the tagger. For example, a simple noun phrase may be defined
as a sequence of article (AT), an arbitrary number of adjectives (JJ) and a
singular noun (NN). This would correspond to the regular expression “AT
JJ* NN.” Since these systems focus on the final application, not on partial
parsing we cover them in what follows not under the rubric “partial pars-
ing,” but grouped according to the application they are intended for. For
an excellent overview of partial parsing (and tagging) see (Abney 1996a).

One important use of tagging in conjunction with partial parsing is for
lexical acquisition. We refer the reader to chapter 8.

Another important application is information extraction (which is alsoinformation

extraction referred to as message understanding, data extraction, or text data min-
ing). The goal in information extraction is to find values for the prede-
fined slots of a template. For example, a template for weather report-
ing might have slots for the type of weather condition (tornado, snow
storm), the location of the event (the San Francisco Bay Area), the time
of the event (Sunday, January 11, 1998), and what the effect of the event
was (power outage, traffic accidents, etc.). Tagging and partial parsing
help identify the entities that serve as slot fillers and the relationships
between them. A recent overview article on information extraction is
(Cardie 1997). In a way one could think of information extraction as
like tagging except that the tags are semantic categories, not grammati-
cal parts of speech. However, in practice quite different techniques tend
to be employed, because local sequences give less information about se-
mantic categories than grammatical categories.

Tagging and partial parsing can also be applied to finding good in-

p

i i

10.7 Further Reading 377

dexing terms in information retrieval. The best unit for matching user
queries and documents is often not the individual word. Phrases like
United States of America and secondary education lose much of their
meaning if they are broken up into words. Information retrieval per-
formance can be improved if tagging and partial parsing are applied
to noun phrase recognition and query-document matching is done on
more meaningful units than individual terms (Fagan 1987; Smeaton 1992;
Strzalkowski 1995). A related area of research is phrase normalization
in which variants of terms are normalized and represented as the same
basic unit (for example, book publishing and publishing of books). See
(Jacquemin et al. 1997).

Finally, there has been work on so-called question answering systemsquestion answering

which try to answer a user query that is formulated in the form of a ques-
tion by returning an appropriate noun phrase such as a location, a person,
or a date (Kupiec 1993b; Burke et al. 1997). For example, the question
Who killed President Kennedy? might be answered with the noun phrase
Oswald instead of returning a list of documents as most information re-
trieval systems do. Again, analyzing a query in order to determine what
type of entity the user is looking for and how it is related to other noun
phrases mentioned in the question requires tagging and partial parsing.

We conclude with a negative result: the best lexicalized probabilistic
parsers are now good enough that they perform better starting with un-
tagged text and doing the tagging themselves, rather than using a tagger
as a preprocessor (Charniak 1997a). Therefore, the role of taggers ap-
pears to be as a fast lightweight component that gives sufficient informa-
tion for many application tasks, rather than as a desirable preprocessing
stage for all applications.

10.7 Further Reading

Early work on modeling natural language using Markov chains had been
largely abandoned by the early sixties, partially due to Chomsky’s criti-
cism of the inadequacies of Markov models (Chomsky 1957: ch. 3). The
lack of training data and computing resources to pursue an ‘empirical’
approach to natural language probably also played a role. Chomsky’s
criticism still applies: Markov chains cannot fully model natural lan-
guage, in particular they cannot model many recursive structures (but
cf. Ristad and Thomas (1997)). What has changed is that approaches that

p

i i

378 10 Part-of-Speech Tagging

emphasize technical goals such as solving a particular task have become
acceptable even if they are not founded on a theory that fully explains
language as a cognitive phenomenon.

The earliest ‘taggers’ were simply programs that looked up the category
of words in a dictionary. The first well-known program which attempted
to assign tags based on syntagmatic contexts was the rule-based pro-
gram presented in (Klein and Simmons 1963), though roughly the same
idea is present in (Salton and Thorpe 1962). Klein and Simmons use the
terms ‘tags’ and ‘tagging,’ though apparently interchangeably with ‘codes’
and ‘coding.’ The earliest probabilistic tagger known to us is (Stolz et al.
1965). This program initially assigned tags to some words (including all
function words) via use of a lexicon, morphology rules, and other ad-hoc
rules. The remaining open class words were then tagged using condi-
tional probabilities calculated from tag sequences. Needless to say, this
wasn’t a well-founded probabilistic model.

Credit has to be given to two groups, one at Brown University, one
at the University of Lancaster, who spent enormous resources to tag two
large corpora, the Brown corpus and the Lancaster-Oslo-Bergen (LOB) cor-
pus. Both groups recognized how invaluable a corpus annotated with
tag information would be for further corpus research. Without these two
tagged corpora, progress on part-of-speech tagging would have been hard
if not impossible. The availability of a large quantity of tagged data is no
doubt an important reason that tagging has been such an active area of
research.

The Brown corpus was automatically pre-tagged with a rule-based tag-
ger, TAGGIT (Greene and Rubin 1971). This tagger used lexical informa-
tion only to limit the tags of words and only applied tagging rules when
words in the surrounding context were unambiguously tagged. The out-
put of the tagger was then manually corrected in an effort that took many
years and supplied the training data for a lot of the quantitative work that
was done later.

One of the first Markov Model taggers was created at the University
of Lancaster as part of the LOB tagging effort (Garside et al. 1987; Mar-
shall 1987). The heart of this tagger was the use of bigram tag sequence
probabilities, with limited use of higher order context, but the differing
probabilities of assigning a word to different parts of speech were han-
dled by ad hoc discounting factors. The type of Markov Model tagger that
tags based on both word probabilities and tag transition probabilities was
introduced by Church (1988) and DeRose (1988).

pa

i i

10.8 Exercises 379

During the beginning of the resurgence of quantitative methods in NLP,
the level of knowledge of probability theory in the NLP community was
so low that a frequent error in early papers is to compute the probability
of the next tag in a Markov model as (10.14) instead of (10.13). At first
sight, (10.14) can seem more intuitive. After all, we are looking at a word
and want to determine its tag, so it is not far-fetched to assume the word
as given and the tag as being conditioned on the word.

arg max
t1,n

P(t1,n|w1,n) =
n∏
i=1

[
P(wi|ti)× P(ti|ti−1)

]
(10.13)

arg max
t1,n

P(t1,n|w1,n) =
n∏
i=1

[
P(ti|wi)× P(ti|ti−1)

]
(10.14)

But, actually, equation (10.14) is not correct, and use of it results in lower
performance (Charniak et al. 1993).

While the work of Church and DeRose was key in the resurgence of
statistical methods in computational linguistics, work on hidden Markov
model tagging had actually begun much earlier at the IBM research cen-
ters in New York state and Paris. Jelinek (1985) and Derouault and Meri-
aldo (1986) are widely cited. Earlier references are Bahl and Mercer (1976)
and Baker (1975), who attributes the work to Elaine Rich. Other early
work in probabilistic tagging includes (Eeg-Olofsson 1985; Foster 1991).

A linguistic discussion of the conversion of nouns to verbs (denomi-denominal verbs

nal verbs) and its productivity can be found in Clark and Clark (1979).
Huddleston (1984: ch. 3) contains a good discussion of the traditional
definitions of parts of speech, their failings, and the notion of part of
speech or word class as used in modern structuralist linguistics.

10.8 Exercises

Exercise 10.21 [«]

Usually, the text we want to tag is not segmented into sentences. An algorithm
for identifying sentence boundaries is introduced in chapter 4, together with a
general overview of the nitty-gritty of corpus processing.

Could we integrate sentence-boundary detection into the tagging methods intro-
duced in this chapter? What would we have to change? How effective would you
expect sentence-boundary detection by means of tagging to be?

p

i i

380 10 Part-of-Speech Tagging

Exercise 10.22 [««]

Get the MULTEXT tagger (see the website) and tag some non-English text from
the website.

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap10 - Part-of-Speech Tagging
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40

	Copyright notice

