CS434a/541a: Pattern Recognition Prof. Olga Veksler Lecture 10 # Today - Continue with Linear Discriminant Functions - Last lecture: Perceptron Rule for weight learning - This lecture: Minimum Squared Error (MSE) rule - Pseudoinverse - Gradient descent (Widrow-Hoff Procedure) - Ho-Kashyap Procedure # LDF: Perceptron Criterion Function - The perceptron criterion function - try to find weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i > 0$ for all samples \mathbf{y}_i - perceptron criterion function $J_p(a) = \sum_{v \in Y_M} (-a^t y)$ - only look at the misclassified samples - will converge in the linearly separable case - Problem: - will not converge in the nonseparable case - to ensure convergence can set $$\eta^{(k)} = \frac{\eta^{(1)}}{k}$$ However we are not guaranteed that we will stop at a good point Idea: convert to easier and better understood problem $a^t y_i > 0$ for all samples y_i solve system of linear inequalities $a^t y_i = b_i$ for all samples y_i solve system of linear equations - MSE procedure - Choose **positive** constants $b_1, b_2, ..., b_n$ - try to find weight vector a s.t. aty; = b; for all samples y; - If we can find weight vector \mathbf{a} such that $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$ for all samples \mathbf{y}_i , then \mathbf{a} is a solution because \mathbf{b}_i 's are positive - consider all the samples (not just the misclassified ones) #### LDF: MSE Margins - Since we want $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$, we expect sample \mathbf{y}_i to be at distance \mathbf{b}_i from the separating hyperplane (normalized by $||\mathbf{a}||$) - Thus $b_1, b_2, ..., b_n$ give relative expected distances or "margins" of samples from the hyperplane - Should make b_i small if sample i is expected to be near separating hyperplane, and make b_i larger otherwise - In the absence of any additional information, there are good reasons to set $b_1 = b_2 = ... = b_n = 1$ #### LDF: MSE Matrix Notation • Need to solve \mathbf{n} equations $\begin{cases} \mathbf{a}^t \mathbf{y}_1 = \mathbf{b}_1 \\ \vdots \\ \mathbf{a}^t \mathbf{v}_1 = \mathbf{b}_2 \end{cases}$ $$\begin{cases} a^t y_1 = b_1 \\ \vdots \\ a^t y_n = b_n \end{cases}$$ Introduce matrix notation: $$\begin{bmatrix} y_{1}^{(0)} & y_{1}^{(1)} & \cdots & y_{1}^{(d)} \\ y_{2}^{(0)} & y_{2}^{(1)} & \cdots & y_{2}^{(d)} \\ \vdots & & & \vdots \\ y_{n}^{(0)} & y_{n}^{(1)} & \cdots & y_{n}^{(d)} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$ Thus need to solve a linear system Ya = b #### LDF: Exact Solution is Rare - Thus need to solve a linear system Ya = b - **Y** is an **n** by (**d** +1) matrix - Exact solution can be found only if Y is nonsingular and square, in which case the inverse Y-1 exists - $a = Y^{-1}b$ - (number of samples) = (number of features + 1) - almost never happens in practice - in this case, guaranteed to find the separating hyperplane # LDF: Approximate Solution - Typically Y is overdetermined, that is it has more rows (examples) than columns (features) - If it has more features than examples, should reduce dimensionality - Need Ya = b, but no exact solution exists for an overdetermined system of equation - More equations than unknowns - Find an approximate solution a, that is Ya ≈ b - Note that approximate solution a does not necessarily give the separating hyperplane in the separable case - But hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane #### LDF: MSE Criterion Function Minimum squared error approach: find a which minimizes the length of the error vector e $$e = Ya - b$$ Ya Thus minimize the minimum squared error criterion function: $$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^i y_i - b_i)^2$$ Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0 # LDF: Optimizing $J_s(a)$ $$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$ Let's compute the gradient: The Let's compute the gradient. $$\nabla J_{s}(a) = \begin{bmatrix} \frac{\partial J_{s}}{\partial a_{0}} \\ \vdots \\ \frac{\partial J_{s}}{\partial a_{d}} \end{bmatrix} = \frac{dJ_{s}}{da} = \sum_{i=1}^{n} \frac{d}{da} (a^{t}y_{i} - b_{i})^{2}$$ $$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i}) \frac{d}{da} (a^{t}y_{i} - b_{i})$$ $$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i})y_{i}$$ $$= 2Y^{t}(Ya - b)$$ #### LDF: Pseudo Inverse Solution $$\nabla J_s(a) = 2Y^t(Ya - b)$$ Setting the gradient to 0: $$2Y^{t}(Ya-b)=0 \Rightarrow Y^{t}Ya=Y^{t}b$$ - Matrix Y'Y is square (it has d + 1 rows and columns) and it is often non-singular - If Y'Y is non-singular, its inverse exists and we can solve for a uniquely: $$\mathbf{a} = (\mathbf{Y}^{t} \mathbf{Y})^{-1} \mathbf{Y}^{t} \mathbf{b}$$ pseudo inverse of \mathbf{Y} $$((\mathbf{Y}^{t} \mathbf{Y})^{-1} \mathbf{Y}^{t}) \mathbf{Y} = (\mathbf{Y}^{t} \mathbf{Y})^{-1} (\mathbf{Y}^{t} \mathbf{Y}) = \mathbf{I}$$ • If $b_1 = \dots = b_n = 1$, MSE procedure is equivalent to finding a hyperplane of best fit through the samples y_1, \dots, y_n Then we shift this line to the origin, if this line was a good fit, all samples will be classified correctly - Only guaranteed the separating hyperplane if Ya > 0 - that is if all elements of vector $\mathbf{Y}\mathbf{a} = \begin{bmatrix} \mathbf{a}^t \mathbf{y}_1 \\ \vdots \\ \mathbf{a}^t \mathbf{y}_n \end{bmatrix}$ are positive - We have Ya ≈ b - That is $\mathbf{Y}\mathbf{a} = \begin{vmatrix} \mathbf{b}_1 + \varepsilon_1 \\ \vdots \\ \mathbf{b}_n + \varepsilon_n \end{vmatrix}$ where ε may be negative - If $\varepsilon_1, \ldots, \varepsilon_n$ are small relative to b_1, \ldots, b_n , then each element of Ya is positive, and a gives a separating hyperplane - If approximation is not good, ε_i may be large and negative, for some i, thus $b_i + \varepsilon_i$ will be negative and a is not a separating hyperplane - Thus in linearly separable case, least squares solution a does not necessarily give separating hyperplane - But it will give a "reasonable" hyperplane - We are free to choose b. May be tempted to make b large as a way to insure Ya ≈ b > 0 - Does not work - Let β be a scalar, let's try βb instead of b - if a^* is a least squares solution to Ya = b, then for any scalar β , least squares solution to $Ya = \beta b$ is βa^* $$\underset{a}{\operatorname{arg min}} \|\mathbf{Y}\mathbf{a} - \beta \mathbf{b}\|^{2} = \underset{a}{\operatorname{arg min}} \beta^{2} \|\mathbf{Y}(\mathbf{a}/\beta) - \mathbf{b}\|^{2}$$ $$= \underset{a}{\operatorname{arg min}} \|\mathbf{Y}(\mathbf{a}/\beta) - \mathbf{b}\|^{2} = \beta \mathbf{a}^{*}$$ - thus if for some *i*th element of Ya is less than 0, that is $y^t_i a < 0$, then $y^t_i (\beta a) < 0$, - Relative difference between components of b matters, but not the size of each individual component #### LDF: How to choose b in MSE Procedure? - So far we assumed that constants $b_1, b_2, ..., b_n$ are positive but otherwise arbitrary - Good choice is $b_1 = b_2 = \dots = b_n = 1$. In this case, - MSE solution is basically identical to Fischer's linear discriminant solution 2. MSE solution approaches the Bayes discriminant function as the number of samples goes to infinity $$g_B(x) = P(c_1 \mid x) - P(c_2 \mid x)$$ - Class 1: (6 9), (5 7) - Class 2: (5 9), (0 4) - Set vectors y₁, y₂, y₃, y₄ by adding extra feature and "normalizing" $$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad \mathbf{y}_4 = \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$$ Matrix **Y** is then $$Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -4 \end{bmatrix}$$ • Choose $$b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$ In matlab, a= Y\b solves the least squares problem $$a = \begin{bmatrix} 2.7 \\ 1.0 \\ -0.9 \end{bmatrix}$$ Note a is an approximation to Ya = b, since no exact solution exists [0.4] [1] $$Ya = \begin{bmatrix} 0.4 \\ 1.3 \\ 0.6 \\ 1.1 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$ This solution does give a separating hyperplane since Ya > 0 - Class 1: (6 9), (5 7) - Class 2: (5 9), (0 10) - The last sample is very far compared to others from the separating hyperplane $$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad \mathbf{y}_4 = \begin{bmatrix} -1 \\ \mathbf{0} \\ -10 \end{bmatrix}$$ $$\mathbf{y}_4 = \begin{bmatrix} -1 \\ 0 \\ -10 \end{bmatrix}$$ • Matrix $$\mathbf{Y} = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$ • Choose $$b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$ In matlab, a= Y\b solves the least squares problem $$a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$$ Note a is an approximation to Ya = b, since no exact solution exists [0.2] [1] $$Ya = \begin{vmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{vmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$ • This solution does not give a separating hyperplane since $a^t y_3 < 0$ MSE pays to much attention to isolated "noisy" examples (such examples are called outliers) No problems with convergence though, and solution it gives ranges from reasonable to good - we know that 4th point is far far from separating hyperplane - In practice we don't know this - Thus appropriate $b = \begin{bmatrix} 1 \\ 1 \\ 10 \end{bmatrix}$ - In Matlab, solve a= Y\b $$a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix}$$ - Note \boldsymbol{a} is an approximation to $\boldsymbol{Ya} = \boldsymbol{b}$, $\boldsymbol{Ya} = \begin{bmatrix} 0.9 \\ 1.0 \\ 0.8 \\ 10.0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 10 \end{bmatrix}$ - This solution does give the separating hyperplane since Ya > 0 #### LDF: Gradient Descent for MSE solution $$\boldsymbol{J}_{s}(\boldsymbol{a}) = \|\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b}\|^{2}$$ - May wish to find MSE solution by gradient descent: - 1. Computing the inverse of **Y**^t**Y** may be too costly - 2. Y'Y may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other) - computing the inverse of Y^tY is not numerically stable - In the beginning of the lecture, computed the gradient: $$\nabla J_s(a) = 2Y^t(Ya - b)$$ #### LDF: Widrow-Hoff Procedure $$\nabla J_s(a) = 2Y^t(Ya - b)$$ Thus the update rule for gradient descent: $$a^{(k+1)} = a^{(k)} - \eta^{(k)} Y^{t} (Ya^{(k)} - b)$$ - If $\eta^{(k)} = \eta^{(1)} / k$ weight vector $\mathbf{a}^{(k)}$ converges to the MSE solution \mathbf{a} , that is $\mathbf{Y}^t(\mathbf{Y}\mathbf{a} \mathbf{b}) = 0$ - Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially: $$a^{(k+1)} = a^{(k)} - \eta^{(k)} y_i (y_i^t a^{(k)} - b_i)$$ - In the MSE procedure, if b is chosen arbitrarily, finding separating hyperplane is not guaranteed - Suppose training samples are linearly separable. Then there is a^s and positive b^s s.t. $$Ya^s = b^s > 0$$ - If we knew b^s could apply MSE procedure to find the separating hyperplane - Idea: find both as and bs - Minimize the following criterion function, restricting to positive \mathbf{b} : $\mathbf{J}_{HK}(\mathbf{a}, \mathbf{b}) = \|\mathbf{Y}\mathbf{a} \mathbf{b}\|^2$ - $J_{HK}(a^s, b^s) = 0$ $$J_{HK}(a,b) = ||Ya - b||^2$$ As usual, take partial derivatives w.r.t. a and b $$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0$$ $$\nabla_b J_{HK} = -2(Ya - b) = 0$$ - Use modified gradient descent procedure to find a minimum of $J_{HK}(a,b)$ - Alternate the two steps below until convergence: - 1) Fix **b** and minimize $J_{HK}(a,b)$ with respect to **a** - 2) Fix \boldsymbol{a} and minimize $\boldsymbol{J}_{HK}(\boldsymbol{a},\boldsymbol{b})$ with respect to \boldsymbol{b} $$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0 \qquad \nabla_b J_{HK} = -2(Ya - b) = 0$$ - Alternate the two steps below until convergence: - 1) Fix **b** and minimize $J_{HK}(a,b)$ with respect to **a** - 2) Fix **a** and minimize $J_{HK}(a,b)$ with respect to **b** - Step (1) can be performed with pseudoinverse - For fixed b minimum of J_{HK}(a,b) with respect to a is found by solving $$2Y^{t}(Ya-b)=0$$ Thus $$\boldsymbol{a} = (\boldsymbol{Y}^t \boldsymbol{Y})^{-1} \boldsymbol{Y}^t \boldsymbol{b}$$ - Step 2: fix \boldsymbol{a} and minimize $\boldsymbol{J}_{HK}(\boldsymbol{a},\boldsymbol{b})$ with respect to \boldsymbol{b} - We can't use b = Ya because b has to be positive - Solution: use modified gradient descent - Regular gradient descent rule: $$b^{(k+1)} = b^{(k)} - \eta^{(k)} \nabla_b J(a^{(k)}, b^{(k)})$$ • If any components of $\nabla_{b}J$ are positive, **b** will decrease and can possibly become negative $$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 * \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 7 \\ 5 \end{bmatrix}$$ - start with positive b, follow negative gradient but refuse to decrease any components of b - This can be achieved by setting all the positive components of $\nabla_{\mathbf{p}} \mathbf{J}$ to $\mathbf{0}$ $$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - |\nabla_b J(a^{(k)}, b^{(k)})| \right]$$ • here $|\mathbf{v}|$ denotes vector we get after applying absolute value to all elements of \mathbf{v} $$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 * \frac{1}{2} \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ -6 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 5 \end{bmatrix}$$ Not doing steepest descent anymore, but we are still doing descent and ensure that b is positive $$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - / \nabla_b J(a^{(k)}, b^{(k)}) / \right]$$ $$\nabla_b J = -2(Ya - b) = 0$$ • Let $$e^{(k)} = Ya^{(k)} - b^{(k)} = -\frac{1}{2} \nabla J_b(a^{(k)}, b^{(k)})$$ Then $$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[-2e^{(k)} - |2e^{(k)}| \right]$$ $$= b^{(k)} + \eta \left[e^{(k)} + |e^{(k)}| \right]$$ - The final Ho-Kashyap procedure: - 0) Start with arbitrary $a^{(1)}$ and $b^{(1)} > 0$, let k = 1 repeat steps (1) through (4) - 1) $e^{(k)} = Ya^{(k)} b^{(k)}$ - 2) Solve for $b^{(k+1)}$ using $a^{(k)}$ and $b^{(k)}$ $b^{(k+1)} = b^{(k)} + \eta [e^{(k)} + |e^{(k)}|]$ - 3) Solve for $a^{(k+1)}$ using $b^{(k+1)}$ $a^{(k+1)} = (Y^t Y)^{-1} Y^t b^{(k+1)}$ - 4) k = k + 1until $e^{(k)} >= 0$ or $k > k_{max}$ or $b^{(k+1)} = b^{(k)}$ - For convergence, learning rate should be fixed between $0 < \eta < 1$ $$b^{(k+1)} = b^{(k)} + \eta [e^{(k)} + |e^{(k)}|]$$ - What if $e^{(k)}$ is negative for all components? - **b** $^{(k+1)} = b^{(k)}$ and corrections stop - Write *e*(*k*) out: $$e^{(k)} = Ya^{(k)} - b^{(k)} = Y(Y^tY)^{-1}Y^tb^{(k)} - b^{(k)}$$ • Multiply by Y^t: $$Y^{t}e^{(k)} = Y^{t}(Y(Y^{t}Y)^{-1}Y^{t}b^{(k)} - b^{(k)}) = Y^{t}b^{(k)} - Y^{t}b^{(k)} = 0$$ • Thus $Y^t e^{(k)} = 0$ - Thus $Y^t e^{(k)} = 0$ - Suppose training samples are linearly separable. Then there is as and positive bs s.t. $$Ya^s = b^s > 0$$ • Multiply both sides by $(e^{(k)})^t$ $$\mathbf{0} = \left(\mathbf{e}^{(k)}\right)^t \mathbf{Y} \mathbf{a}^s = \left(\mathbf{e}^{(k)}\right)^t \mathbf{b}^s$$ • Either by $e^{(k)} = 0$ or one of its components is positive - In the linearly separable case, - $e^{(k)} = 0$, found solution, stop - one of components of $e^{(k)}$ is positive, algorithm continues - In non separable case, - $e^{(k)}$ will have only negative components eventually, thus found proof of nonseparability - No bound on how many iteration need for the proof of nonseparability # LDF: Ho-Kashyap Procedure Example - Class 1: (6 9), (5 7) - Class 1: (5 9), (0 10) - Matrix $$Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$ - Start with $\mathbf{a}^{(1)} = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$ and $\mathbf{b}^{(1)} = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$ - Use fixed learning $\eta = 0.9$ - At the start $Ya^{(1)} = \begin{bmatrix} 16 \\ 13 \\ -15 \\ -11 \end{bmatrix}$ #### LDF: Ho-Kashyap Procedure Example Iteration 1: $$\mathbf{e}^{(1)} = \mathbf{Y}\mathbf{a}^{(1)} - \mathbf{b}^{(1)} = \begin{bmatrix} 16 \\ 13 \\ -15 \\ -11 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix}$$ • solve for $b^{(2)}$ using $a^{(1)}$ and $b^{(1)}$ $$b^{(2)} = b^{(1)} + 0.9 \left[e^{(1)} + /e^{(1)} / \right] = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + 0.9 \left[\begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix} + \begin{bmatrix} 15 \\ 12 \\ 16 \\ 12 \end{bmatrix} \right] = \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix}$$ • solve for $a^{(2)}$ using $b^{(2)}$ $$a^{(2)} = (Y^{t}Y)^{-1}Y^{t} b^{(2)} = \begin{bmatrix} -2.6 & 4.7 & 1.6 - 0.5 \\ 0.16 & -0.1 & -0.1 & 0.2 \\ 0.26 & -0.5 & -0.2 & -0.1 \end{bmatrix} * \begin{vmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{vmatrix} = \begin{bmatrix} 34.6 \\ 2.7 \\ -3.8 \end{bmatrix}$$ # LDF: Ho-Kashyap Procedure Example - Continue iterations until Ya > 0 - In practice, continue until minimum component of *Ya* is less then 0.01 After 104 iterations converged to solution $$a = \begin{bmatrix} -34.9 \\ 27.3 \\ -11.3 \end{bmatrix} \qquad b = \begin{bmatrix} 28 \\ 23 \\ 1 \\ 147 \end{bmatrix}$$ a does gives a separating hyperplane Ya = $$\begin{vmatrix} 27.2 \\ 22.5 \\ 0.14 \\ 1.48 \end{vmatrix}$$ - Suppose we have *m* classes - Define m linear discriminant functions $$g_i(x) = w_i^t x + w_{i0}$$ $i = 1,...,m$ Given x, assign class c_i if $$g_i(x) \ge g_i(x) \quad \forall j \ne i$$ - Such classifier is called a *linear machine* - A linear machine divides the feature space into c decision regions, with $g_i(x)$ being the largest discriminant if x is in the region R_i # LDF: Many Classes - We still use augmented feature vectors $y_1, ..., y_n$ - Define *m* linear discriminant functions $$g_i(y) = a_i^t y$$ $i = 1,...,m$ Given y, assign class c_i if $$a_i^t y \geq a_i^t y \qquad \forall j \neq i$$ For each class i, makes sense to seek weight vector a_i, s.t. $$\begin{cases} a_i^t y = 1 & \forall y \in \text{class i} \\ a_i^t y = 0 & \forall y \notin \text{class i} \end{cases}$$ • If we find such a_1, \ldots, a_m the training error will be 0 For each class i, find weight vector a_i, s.t. $$\begin{cases} a_i^t y = 1 & \forall y \in \text{class i} \\ a_i^t y = 0 & \forall y \notin \text{class i} \end{cases}$$ - We can solve for each a_i independently - Let n_i be the number of samples in class i - Let Y_i be matrix whose rows are samples from class i, so it has d+1 columns and n_i rows - Let's pile all samples in *n* by *d* + 1 matrix *Y*: $$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_m \end{bmatrix} = \begin{bmatrix} sample \ from \ class 1 \\ sample \ from \ class m \\ sample \ from \ class m \\ sample \ from \ class m \end{bmatrix}$$ Let b_i be a column vector of length n which is 0 everywhere except rows corresponding to samples from class i, where it is 1: \(\int_0\)\ $$b_{i} = \begin{bmatrix} \vdots \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$ rows corresponding to samples from class i • We need to solve: $Ya_i = b_i$ $\begin{bmatrix} sample from class 1 \\ sample from class 1 \end{bmatrix} \begin{bmatrix} \vec{v} \\ \vec{v} \end{bmatrix}$ - We need to solve $Ya_i = b_i$ - Usually no exact solution since Y is overdetermined - Use least squares to minimize norm of the error vector || Ya_i b_i || - LSE solution with pseudoinverse: $$\mathbf{a}_i = (\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t \mathbf{b}_i$$ - Thus we need to solve m LSE problems, one for each class - Can write these m LSE problems in one matrix Let's pile all b_i as columns in n by c matrix B $$\boldsymbol{B} = [\boldsymbol{b}_1 \ \cdots \ \boldsymbol{b}_n]$$ Let's pile all a_i as columns in d + 1 by m matrix A $$\mathbf{A} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \end{bmatrix} = \begin{bmatrix} \mathbf{a}^m & \mathbf{a}^m \\ \mathbf{a}^m & \mathbf{a}^m \end{bmatrix}$$ m LSE problems can be represented in YA = B: $$\begin{bmatrix} sample \ from \ class1 \\ sample \ from \ class2 \\ sample \ from \ class3 \\ \end{bmatrix} \begin{bmatrix} w \\ 100 \\ 010 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\ 001 \\$$ Y A B Our objective function is: $$J(A) = \sum_{i=1}^{m} ||Ya_i - b_i||^2$$ ■ **J**(**A**) is minimized with the use of pseudoinverse $$\boldsymbol{A} = \left(\boldsymbol{Y}^t \boldsymbol{Y}\right)^{-1} \boldsymbol{Y} \boldsymbol{B}$$ ## LDF: Summary #### Perceptron procedures - find a separating hyperplane in the linearly separable case, - do not converge in the non-separable case - can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point #### MSE procedures - converge in separable and not separable case - may not find separating hyperplane if classes are linearly separable - use pseudoinverse if Y'Y is not singular and not too large - use gradient descent (Widrow-Hoff procedure) otherwise #### Ho-Kashyap procedures - always converge - find separating hyperplane in the linearly separable case - more costly