CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 10

Today

= Continue with Linear Discriminant Functions
= |ast lecture: Perceptron Rule for weight learning

= This lecture: Minimum Squared Error (MSE) rule
= Pseudoinverse
= Gradient descent (Widrow-Hoff Procedure)
= Ho-Kashyap Procedure

LDF: Perceptron Criterion Function

= The perceptron criterion function
= try to find weight vector a s.t. a'y; > 0 for all samples y;
= perceptron criterion function J,(a)= > (-a'y)
yeYuy

= only look at the misclassified samples
= will converge in the linearly separable case

| P I I I -
roble / // / 7 / P ‘,"
" Py 56/ //’
o Pl 4
g A 2
S // 3 2

= will not converge in the nonseparable
case

= {0 ensure convergence can set

L o - N w N o (&)
; : . : ‘ ‘ ‘ d

= However we are not guaranteed that
we will stop at a good point

LDF: Minimum Squared-Error Procedures

= |dea: convert to easier and better understood problem

a'y. > 0 for all samples y;
solve system of linear inequalities

J

a'y; = b; for all samples y;
solve system of linear equations

= MSE procedure
= Choose positive constants b,, b,,..., b,
= try to find weight vector a s.t. a'y; = b; for all samples y;

= |f we can find weight vector a such that a'y; = b, for all
samples y;, then a s a solution because b;'s are positive

= consider all the samples (not just the misclassified ones)

LDF: MSE Margins

= Since we want a'y; = b, we expect sample y;to be at distance
b; from the separating hyperplane (normalized by ||a||)

= Thus b,, b,,..., b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample i is expected to be near
separating hyperplane, and make b; larger otherwise

In the absence of any additional information, there are good
reasonstoset b,= b,=...=b, =1

LDF: MSE Matrix Notation

_ I aty1 = b1
= Need to solve n equations < :
a'y,=b,
= Introduce matrix notation:
YOy Ty
v v2 v || 2] | b,
; ; d1=]
YOy .yl | F b,
\\ J\ J \ |
Y Y) |
Y a b

= Thus need to solve a linear system Ya=b

LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya=b
= Yis an nby (d +7) matrix

= Exact solution can be found only if Yis nonsingular
and square, in which case the inverse Y-7exists
= a=Y"b
= (number of samples) = (number of features + 1)
= almost never happens In practice
= |n this case, guaranteed to find the separating hyperplane

LDF: Approximate Solution

= Typically Y Is overdetermined, that is it has more

rows (examples) than columns (features)

= |f it has more features than examples, should reduce
dimensionality

Y ||a| =|b

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns

= Find an approximate solution a, thatis Ya= b

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to @ may still be a gooad
solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
vt %

Ya

= Thus minimize the minimum squared error criterion

function: , &)
J,(a)=|va-bf =Y (a'y,-b)
i=1
= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

LDF: Optimizing Ja)

n

J,(a)=|Ya-bf => @'y, - b

i=1
= | et's compute the gradient:
0.
%% | dJ, & d
aJs da ‘Zda

VJ,(a)=

oa,

LDF: Pseudo Inverse Solution

vJ (a)=2Y'(Ya-b)

= Setting the gradient to O:
2Y'(Ya-b)=0 = Y'Ya=Y'b
= Matrix Y'Y is square (it has d +7 rows and columns)
and it is often non-singular

= |[f Y'Y is non-singular, its inverse exists and we can
solve for a uniquely:

a=(Y'Y)'vyb
pseudo inverse of Y
(vry)'y)y =(vty)'(viy)=1

LDF: Minimum Squared-Error Procedures

= |f b,=...=b,=1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y,,...,¥,

J,(a)=|Ya-1,

= Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly

LDF: Minimum Squared-Error Procedures

= Only guaranteed the separating hyperplane if Ya > 0

= that is if all elements of vector Ya =

= We have Ya=b
b, +¢&, |
= Thatis Ya= :

b, +¢,

1=
ay .
; are positive

k

where £ may be negative

= If ¢,..., & are small relative to b,,..., b,, then each element
of Yais positive, and a gives a separating hyperplane

= |f approximation is not good, & may be large and negative,
for some i, thus b; + & will be negative and a is not a

separating hyperplane

= Thus in linearly separable case, least squares solution
a does not necessarily give separating hyperplane

= Butit will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Ya=b>0

= Does not work

= Let Bbe a scalar, let's try Sb instead of b

= if @a*is a least squares solution to Ya = b, then for any
scalar p, least squares solutionto Ya= b is fa*

arg min|Ya— gb|" = argmin *|Y(a/B)- b
=argmin|Y(a/B)-b|" = pa*

= thus if for some ith element of Ya is less than 0, that is
yta < 0, then y'. (fa) < 0,

= Relative difference between components of b matters,
but not the size of each individual component

LDF: How to choose b in MSE Procedure?

= So far we assumed that constants b,, b,,..., b,are
positive but otherwise arbitrary

= Good choiceis b;= b,=...= b,= 1. In this case,
1. MSE solution is basically identical

to Fischer’s linear discriminant
solution

2. MSE solution approaches the Bayes discriminant
function as the number of samples goes to infinity

gs(x)=Plc, | x)-P(c, | x)

LDF: Example

Class 1: (6 9), (5 7)
Class 2:(59), (0 4)

Set vectors y,, V., V3, Y4 by

adding extra feature and .

(9] R o [=2] ~ o «©
T T T T T T

-1 0 1 2 3 4 5 6

“normalizing”
HIP P
.V1—_9_ .Vz—_7_ .V3—__9_ .V4—__4_

1
Matrix Y is then Y = ;
1

LDF: Example

1 10
» Choose b-=|] 8
1 Bl
= |n matlab, a=Y\b solves the T
least squares problem o
2.7 | \ \
ad= 1.0 % 0 2 4
__ 0.9_
= Note ais an approximation to Ya = b, since no
exact solution exists 0.4] [1]
|11.3]|]|1
Ya=|06|*|1
1.1] | 1]

= This solution does give a separating hyperplane
since Ya> 0

LDF: Example

= Class 1: (6 9), (57)

= Class 2: (59), (0 10)

= The last sample is very far
compared to others from the
separating hyperplane

1
y,= _g_
= Matrix Y =

y,=

1

4

Y;=

LDF: Example

101 B

9.5¢

Choose b=

1
ﬂﬂﬂﬂl

8.5

In matlab, a=Y\b solves the
least squares problem

7.5F

3.2] | | |
a= 0.2 8% 0 > 4
—0.4
Note a is an approximation to Ya = b, since no

exact solution exists 0.2 [1]
_ 0.9 1
Ya=|_p04!|%|1
| 1.16| |1

This solution does not give a separating
hyperplane since a'y; < 0

LDF: Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

MSE solution

o
outlier

=%
“, desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good

LDF: Example

= we know that 4t point is far far
from separating hyperplane

= |n practice we don't know this
- -

= I 1
Thus appropriate b=| ;

A N = N o
T T T T T T

10
= |n Matlab, solve a=Y\b E 0 2 ‘ 6
{—1.1}
a=| 1.7
—0s 0.9 [1]
* Note ais an approximationto Ya=b, va=| 50|»| 1
10.0 10

= This solution does give the separating hyperplane
since Ya> 0

LDF: Gradient Descent for MSE solution
J,(a)=|Ya- b’

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)
= computing the inverse of Y'Y is not numerically stable

= |n the beginning of the lecture, computed the

gradient:
vJ (a)=2Y'(Ya-Db)

LDF: Widrow-Hoff Procedure

vJ (a)=2Y'(Ya-b)

= Thus the update rule for gradient descent:
ak+) = g _ pyt(ya® _ p)
= If % =»"/k weight vector ak converges to the MSE
solution a, that is Y!(Ya-b)=0

= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

k+1)

24—l %y, (yta® -)

LDF: Ho-Kashyap Procedure

* |n the MSE procedure, if b is chosen arbitrarily,
finding separating hyperplane is not guaranteed

= Suppose training samples are linearly separable.
Then there is as and positive bSs s.t.

Ya’ =b° >0
= |f we knew bs could apply MSE procedure to find the
separating hyperplane
= |dea: find both as and bs
= Minimize the following criterion function, restricting to

pOSI’[IVG b: JHK(a, b) _ HYa _ bHZ
o Jyas,b%)=0

LDF: Ho-Kashyap Procedure

J, (@ b)=|Ya-b[°

= As usual, take partial derivatives w.r.t. aand b
V. J =2Y'(Ya-b)=0
V. Ju =—2(Ya-b)=0

= Use modified gradient descent procedure to find a
minimum of Jy(a,b)

= Alternate the two steps below until convergence:

1) Fix b and minimize Jy(a,b) with respect to a
2) Fix a and minimize Jy(a,b) with respectto b

LDF: Ho-Kashyap Procedure

V.J,=2Y'(Ya-b)=0 V,J,=-2(Ya-b)=0

= Alternate the two steps below until convergence:

1) Fix b and minimize Jy(a,b) with respect to a
2) Fix a and minimize Jy(a,b) with respectto b

= Step (1) can be performed with pseudoinverse

= For fixed b minimum of Jy{a,b) with respect to a is
found by solving

2Y'(Ya-b)=0
= Thus
a=(Y'Y)'Y'b

LDF: Ho-Kashyap Procedure

= Step 2: fix @ and minimize Jy(a,b) with respect to b

= We can't use b= Ya because b has to be positive

= Solution: use modified gradient descent

= Regular gradient descent rule:
bV = p) _ pllyJ(a®) p*)}

= |f any components of V,J are positive, b will
decrease and can possibly become negative

1] | 2] [-3]
¥ =11|-2*% -3 7
1 -2| | 5

LDF: Ho-Kashyap Procedure

= start with positive b, follow negative gradient but
refuse to decrease any components of b

= This can be achieved by setting all the positive
components of V,J to 0

plk+1) — plk) _ n%[VbJ(a(k),b(k)) _ /VbJ(a(k)’b(k))/]

= here |v| denotes vector we get after applying absolute
value to all elements of v

RN

= Not doing steepest descent anymore, but we are
still doing descent and ensure that b is positive

LDF: Ho-Kashyap Procedure

pls1) — plk) _ n%[V,,J(a("),b"") - |V, J(@®,b") |

V,J=-2(Ya—b)=0
1

‘Lot e =va®-b® = vy,(a®,b")

= Then 1
plk+1) — plk) _ 775[_ 20K _ | 2ek) |]

— plk) 4 n[e(") +] el |]

LDF: Ho-Kashyap Procedure

= The final Ho-Kashyap procedure:
0) Start with arbitrary a” and b("> 0, let k = 1
repeat steps (1) through (4)
1) e = yalk) _ p®
2) Solve for bk+1) using a®) and bk
plk+1) — plk) 4 n[e(k) +] ek |]

3) Solve for atk+1) ysing bfk+1)
gtk+) — (Y’Y)'1Y' plk+)
4) kK=K + 1
until e®¥>=0 or k> k,,,, or blk+1) = bk

= For convergence, learning rate should be fixed
between 0 < 77 < 1

LDF: Ho-Kashyap Procedure

plk+) — plk) 4 n[e(") +] el |]

= What if e® is negative for all components?
= plk+7) = pk) and corrections stop

= Write e out:

e® = ya® _ p® _y(yty)ytp® _ p®

= Multiply by Y

Yie® = V"(V(V"V)‘1 Yy b(")) =Y _yip =0
= Thus Yte®) = 0

LDF: Ho-Kashyap Procedure

= Thus Ytel® = 0

= Suppose training samples are linearly separable.
Then there is as and positive bS s.t.

Ya®=b">0
= Multiply both sides by (el¥)!
0= (e(k))t Yas = (e(k))tbs

= Either by e® = 0 or one of its components is
positive

LDF: Ho-Kashyap Procedure

= In the linearly separable case,

= ek =0, found solution, stop
= one of components of ek is positive, algorithm continues

= |[n non separable case,

= ek will have only negative components eventually, thus
found proof of nonseparability

= No bound on how many iteration need for the proof of
nonseparability

LDF: Ho-Kashyap Procedure Example

= Class 1: (6 9), (57) o
= Class 1: (5 9), (0 10) i
- g g1
O ' — 1 / ’
atrix r= -1 -5 -9 R R T R
-1 0-10
1 _1_
' 1 _|1
= Start with a'” = ; and b =|]
- - 1

= Use fixed learning 7= 0.9
- ;g_

o (1) _
At the start Ya'’=| 115

LDF: Ho-Kashyap Procedure Example

= |teration 1:

e(1) — Ya(1)

—p\ =

= r

13
- 15

- 11

) vl -l

__ 12—

15]
12
- 16

solve for b using a” and b(")

b® = b +0.9le” +/e" || =

solve for a® using b

2) — (Yty)—1yt b(

01

+ 0.9

LDF: Ho-Kashyap Procedure Example

10f |
= Continue iterations until Ya> 0 | /g

= |n practice, continue until minimum ol

component of Yais less then 0.01 | .

6 I I L I
-2 0 2 4 6

= After 104 iterations converged to solution
—34.9 28]

1
- 11.3 _147_

= g does gives a separating hyperplane

Ya=|014
1.48

LDF: MSE for Multiple Classes

Suppose we have m classes
Define m linear discriminant functions

g, (xX)=w;x+w, i=1,..,m

Given x, assign class ¢; if
g/(x)2g,(x) Vj=i

Such classifier is called a linear machine

A linear machine divides the feature space into ¢
decision regions, with g;(x) being the largest
discriminant if x is in the region R;

LDF: Many Classes

LDF: MSE for Multiple Classes

We still use augmented feature vectors y,,..., ¥,
Define m linear discriminant functions

g(y)=ay i=1,..m
Given y, assign class ¢; if
t t = =
ayzay V] #I

For each class I, makes sense to seek weight
vector a;, s.t.
ay=1 Vy e class i
ay=0 Vy ¢ class i

If we find such a,,..., a,, the training error will be 0

LDF: MSE for Multiple Classes

For each class i, find weight vector a; s.t.
ay=1 Vy € class i
ay=0 Vy ¢ class i

We can solve for each a; independently

Let n; be the number of samples in class i

Let Y; be matrix whose rows are samples from
class i, so it has d +1 columns and n; rows

Let’s pile all samples in nby d +7 matrix Y-

Y, | sample from class1 |
Y sample from class1

y=|" s

sample from class m

Y ' sample from class m

LDF: MSE for Multiple Classes

= Let b; be a column vector of length n which is 0
everywhere except rows corresponding to samples

from class i, where itis 7: g

b. =

]

= We need to solve: Ya, =b,

- sample from class 1]
sample from class1

sample from class m

| sample from class m |

1
1
0.

J

weights a;

rows corresponding
to samples from class i

|
Q""l"'ﬂ"’g

LDF: MSE for Multiple Classes

We need to solve Ya; = b;
Usually no exact solution since Y is overdetermined

Use least squares to minimize norm of the error
vector || Ya,; - b; ||

LSE solution with pseudoinverse:
a =(Y'y)'v'p,

Thus we need to solve m LSE problems, one for
each class

Can write these m LSE problems in one matrix

LDF: MSE for Multiple Classes

= Let's pile all b; as columns in n by ¢ matrix B

=[b1 bn]

= Let's pile all a;as columns in d +7 by m matrix A
_ ({NN CUE_
28 o
-[a - a,] - §8 §
£3 2
= m LSE problems can be represented in YA=B
' sample from class1|[SYGQ] 1100
sample from class1 SSS 100
sample from class2|| 4 o o| —|0 10
sample from class3 %%E’ 8 8 }
sample from class3) '?,’ 00 1
| 2 2 3 L]
| sample from class3 |
Y A B

LDF: MSE for Multiple Classes

= Qur objective function is:
J(A)=Y |a, - b
i=1

= J(A) iIs minimized with the use of pseudoinverse
A=(v'y)'vyB

LDF: Summary

= Perceptron procedures

= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge in separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y is not singular and not too large
= use gradient descent (Widrow-Hoff procedure) otherwise

= Ho-Kashyap procedures

= always converge
= find separating hyperplane in the linearly separable case
= more costly

