CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 10
Today

- Continue with Linear Discriminant Functions
 - Last lecture: Perceptron Rule for weight learning
 - This lecture: Minimum Squared Error (MSE) rule
 - Pseudoinverse
 - Gradient descent (Widrow-Hoff Procedure)
 - Ho-Kashyap Procedure
LDF: Perceptron Criterion Function

- The perceptron criterion function
 - try to find weight vector a s.t. $a^ty_i > 0$ for all samples y_i
 - perceptron criterion function $J_p(a) = \sum_{y \in Y_m}(- a^ty)$
 - only look at the misclassified samples
 - will converge in the linearly separable case

- Problem:
 - will not converge in the nonseparable case
 - to ensure convergence can set
 $$\eta^{(k)} = \frac{\eta^{(1)}}{k}$$
 - However we are not guaranteed that we will stop at a good point
LDF: Minimum Squared-Error Procedures

- Idea: convert to easier and better understood problem

 \[a^t y_i > 0 \] for all samples \(y_i \)

 solve system of linear inequalities

 \[a^t y_i = b_i \] for all samples \(y_i \)

 solve system of linear equations

- MSE procedure
 - Choose **positive** constants \(b_1, b_2, \ldots, b_n \)

 try to find weight vector \(a \) s.t. \(a^t y_i = b_i \) for all samples \(y_i \)

 If we can find weight vector \(a \) such that \(a^t y_i = b_i \) for all samples \(y_i \), then \(a \) is a solution because \(b_i \)'s are positive

 consider all the samples (not just the misclassified ones)
Since we want $a^Ty_i = b_i$, we expect sample y_i to be at distance b_i from the separating hyperplane (normalized by $||a||$)

Thus b_1, b_2, \ldots, b_n give relative expected distances or “margins” of samples from the hyperplane

Should make b_i small if sample i is expected to be near separating hyperplane, and make b_i larger otherwise

In the absence of any additional information, there are good reasons to set $b_1 = b_2 = \ldots = b_n = 1$
Need to solve \(n \) equations

\[
\begin{align*}
\begin{cases}
a^t y_1 &= b_1 \\
&
\vdots \\
a^t y_n &= b_n
\end{cases}
\end{align*}
\]

Introduce matrix notation:

\[
\begin{bmatrix}
y_1^{(0)} & y_1^{(1)} & \cdots & y_1^{(d)} \\
y_2^{(0)} & y_2^{(1)} & \cdots & y_2^{(d)} \\
\vdots & \vdots & \ddots & \vdots \\
y_n^{(0)} & y_n^{(1)} & \cdots & y_n^{(d)}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_d
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}
\]

Thus need to solve a linear system

\[
Ya = b
\]
LDF: Exact Solution is Rare

- Thus need to solve a linear system \(Ya = b \)
 - \(Y \) is an \(n \) by \((d+1) \) matrix
- Exact solution can be found only if \(Y \) is nonsingular and square, in which case the inverse \(Y^{-1} \) exists
 - \(a = Y^{-1}b \)
 - (number of samples) = (number of features + 1)
 - almost never happens in practice
 - in this case, guaranteed to find the separating hyperplane
LDF: Approximate Solution

- Typically Y is overdetermined, that is it has more rows (examples) than columns (features)
 - If it has more features than examples, should reduce dimensionality
 \[Y \begin{bmatrix} a \end{bmatrix} = b \]

- Need $Ya = b$, but no exact solution exists for an overdetermined system of equation
 - More equations than unknowns

- Find an approximate solution a, that is $Ya \approx b$
 - Note that approximate solution a does not necessarily give the separating hyperplane in the separable case
 - But hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane
LDF: MSE Criterion Function

- Minimum squared error approach: find \(a \) which minimizes the length of the error vector \(e \)

\[
e = Ya - b
\]

- Thus minimize the *minimum squared error* criterion function:

\[
J_s(a) = \| Ya - b \|^2 = \sum_{i=1}^{n} (a^t y_i - b_i)^2
\]

- Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to \(0 \)
LDF: Optimizing $J_s(a)$

$$J_s(a) = \|Ya - b\|^2 = \sum_{i=1}^{n} (a^t y_i - b_i)^2$$

- Let’s compute the gradient:

$$\nabla J_s(a) = \begin{bmatrix}
\frac{\partial J_s}{\partial a_0} \\
\vdots \\
\frac{\partial J_s}{\partial a_d}
\end{bmatrix} = \frac{dJ_s}{da} = \sum_{i=1}^{n} \frac{d}{da} (a^t y_i - b_i)^2$$

$$= \sum_{i=1}^{n} 2(a^t y_i - b_i) \frac{d}{da} (a^t y_i - b_i)$$

$$= \sum_{i=1}^{n} 2(a^t y_i - b_i)y_i$$

$$= 2Y^t(Ya - b)$$
LDF: Pseudo Inverse Solution

\[\nabla J_s(a) = 2Y^t(Ya - b) \]

- Setting the gradient to 0:
 \[2Y^t(Ya - b) = 0 \implies Y^tYa = Y^tb \]

- Matrix \(Y^tY \) is square (it has \(d + 1 \) rows and columns) and it is often non-singular

- If \(Y^tY \) is non-singular, its inverse exists and we can solve for \(a \) uniquely:
 \[
 a = \left(Y^tY \right)^{-1} Y^t b
 \]

 pseudo inverse of \(Y \)

 \[
 \left(\left(Y^tY \right)^{-1} Y^t \right)Y = \left(Y^tY \right)^{-1} \left(Y^tY \right) = I
 \]
If \(b_1 = \ldots = b_n = 1 \), MSE procedure is equivalent to finding a hyperplane of best fit through the samples \(y_1, \ldots, y_n \)

\[
J_s(a) = \| Ya - 1_n \|^2
\]

Then we shift this line to the origin, if this line was a good fit, all samples will be classified correctly.
LDF: Minimum Squared-Error Procedures

- Only guaranteed the separating hyperplane if $Ya > 0$
 - that is if all elements of vector $Ya = \begin{bmatrix} a^t y_1 \\ \vdots \\ a^t y_n \end{bmatrix}$ are positive
- We have $Ya \approx b$
- That is $Ya = \begin{bmatrix} b_1 + \varepsilon_1 \\ \vdots \\ b_n + \varepsilon_n \end{bmatrix}$ where ε may be negative
- If $\varepsilon_1, \ldots, \varepsilon_n$ are small relative to b_1, \ldots, b_n, then each element of Ya is positive, and a gives a separating hyperplane
- If approximation is not good, ε_i may be large and negative, for some i, thus $b_i + \varepsilon_i$ will be negative and a is not a separating hyperplane
- Thus in linearly separable case, least squares solution a does not necessarily give separating hyperplane
- But it will give a “reasonable” hyperplane
LDF: Minimum Squared-Error Procedures

- We are free to choose b. May be tempted to make b large as a way to insure $Ya \approx b > 0$

- Does not work
 - Let β be a scalar, let’s try βb instead of b
 - if a^* is a least squares solution to $Ya = b$, then for any scalar β, least squares solution to $Ya = \beta b$ is βa^*

\[
\arg\min_a \|Ya - \beta b\|^2 = \arg\min_a \beta^2 \|Y(a/\beta) - b\|^2 \\
= \arg\min_a \|Y(a/\beta) - b\|^2 = \beta a^*
\]

- thus if for some ith element of Ya is less than 0, that is $y_i^t a < 0$, then $y_i^t (\beta a) < 0$,

- Relative difference between components of b matters, but not the size of each individual component.
So far we assumed that constants \(b_1, b_2, \ldots, b_n \) are positive but otherwise arbitrary.

Good choice is \(b_1 = b_2 = \ldots = b_n = 1 \). In this case, MSE solution is basically identical to Fischer’s linear discriminant solution.

1. MSE solution approaches the Bayes discriminant function as the number of samples goes to infinity:

\[
g_B(x) = P(c_1 \mid x) - P(c_2 \mid x)
\]
LDF: Example

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)

- Set vectors y_1, y_2, y_3, y_4 by adding extra feature and "normalizing"

$$
\begin{align*}
 y_1 &= \begin{bmatrix} 1 \\ 6 \\ 9 \end{bmatrix} \\
 y_2 &= \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \\
 y_3 &= \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \\
 y_4 &= \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}
\end{align*}
$$

- Matrix Y is then

$$
Y = \begin{bmatrix}
 1 & 6 & 9 \\
 1 & 5 & 7 \\
 -1 & -5 & -9 \\
 -1 & 0 & -4
\end{bmatrix}
$$
LDF: Example

- Choose \(b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \)

- In matlab, \(a = Y \backslash b \) solves the least squares problem
 \[
 a = \begin{bmatrix} 2.7 \\ 1.0 \\ -0.9 \end{bmatrix}
 \]

- Note \(a \) is an approximation to \(Ya = b \), since no exact solution exists
 \[
 Ya = \begin{bmatrix} 0.4 \\ 1.3 \\ 0.6 \\ 1.1 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
 \]

- This solution does give a separating hyperplane since \(Ya > 0 \)
LDF: Example

- **Class 1:** (6 9), (5 7)
- **Class 2:** (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane

\[y_1 = \begin{bmatrix} 1 \\ 6 \\ 9 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \quad y_3 = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ 0 \\ -10 \end{bmatrix} \]

- **Matrix** \(Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix} \)
LDF: Example

- Choose $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

- In matlab, $a = Y \backslash b$ solves the least squares problem

$$a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$$

- Note a is an approximation to $Ya = b$, since no exact solution exists

$$Ya = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- This solution does not give a separating hyperplane since $a^t y_3 < 0$
MSE pays too much attention to isolated “noisy” examples (such examples are called outliers).

No problems with convergence though, and solution it gives ranges from reasonable to good.
LDF: Example

- we know that 4th point is far far from separating hyperplane
 - In practice we don’t know this

- Thus appropriate $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 10 \end{bmatrix}$

- In Matlab, solve $a = \mathbf{Y}\backslash b$

 $a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix}$

- Note a is an approximation to $\mathbf{Y}a = b$, $\mathbf{Y}a = \begin{bmatrix} 0.9 \\ 1.0 \\ 0.8 \\ 10.0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 10 \end{bmatrix}$

- This solution does give the separating hyperplane since $\mathbf{Y}a > 0$
LDF: Gradient Descent for MSE solution

\[J_s(a) = \| Ya - b \|^2 \]

- May wish to find MSE solution by gradient descent:
 1. Computing the inverse of \(Y^t Y \) may be too costly
 2. \(Y^t Y \) may be close to singular if samples are highly correlated (rows of \(Y \) are almost linear combinations of each other)
 - computing the inverse of \(Y^t Y \) is not numerically stable

- In the beginning of the lecture, computed the gradient:
 \[\nabla J_s(a) = 2Y^t(Ya - b) \]
Thus the update rule for gradient descent:

\[a^{(k+1)} = a^{(k)} - \eta^{(k)} Y^t (Ya^{(k)} - b) \]

- If \(\eta^{(k)} = \eta^{(1)}/k \) weight vector \(a^{(k)} \) converges to the MSE solution \(a \), that is \(Y^t(Ya-b)=0 \)

- **Widrow-Hoff procedure** reduces storage requirements by considering single samples sequentially:

\[a^{(k+1)} = a^{(k)} - \eta^{(k)} y_i (y_i^t a^{(k)} - b_i) \]
LDF: Ho-Kashyap Procedure

- In the MSE procedure, if b is chosen arbitrarily, finding separating hyperplane is not guaranteed.
- Suppose training samples are linearly separable. Then there is a^s and positive b^s s.t.

 \[Ya^s = b^s > 0 \]
- If we knew b^s could apply MSE procedure to find the separating hyperplane.
- Idea: find both a^s and b^s.
- Minimize the following criterion function, restricting to positive b:

 \[J_{HK}(a, b) = \| Ya - b \|^2 \]
- \[J_{HK}(a^s, b^s) = 0 \]
LDF: Ho-Kashyap Procedure

\[J_{HK}(a, b) = \|Ya - b\|^2 \]

- As usual, take partial derivatives w.r.t. \(a\) and \(b\)
 \[\nabla_a J_{HK} = 2Y^t(Ya - b) = 0 \]
 \[\nabla_b J_{HK} = -2(Ya - b) = 0 \]

- Use modified gradient descent procedure to find a minimum of \(J_{HK}(a, b)\)

- Alternate the two steps below until convergence:
 1) Fix \(b\) and minimize \(J_{HK}(a, b)\) with respect to \(a\)
 2) Fix \(a\) and minimize \(J_{HK}(a, b)\) with respect to \(b\)
LDF: Ho-Kashyap Procedure

\[\nabla_a J_{HK} = 2Y^t(Ya - b) = 0 \quad \nabla_b J_{HK} = -2(Ya - b) = 0 \]

- Alternate the two steps below until convergence:
 1) Fix \(b \) and minimize \(J_{HK}(a,b) \) with respect to \(a \)
 2) Fix \(a \) and minimize \(J_{HK}(a,b) \) with respect to \(b \)

- Step (1) can be performed with pseudoinverse
 - For fixed \(b \) minimum of \(J_{HK}(a,b) \) with respect to \(a \) is found by solving
 \[2Y^t(Ya - b) = 0 \]
 - Thus
 \[a = (Y^tY)^{-1}Y^t b \]
LDF: Ho-Kashyap Procedure

- Step 2: fix \(a \) and minimize \(J_{HK}(a,b) \) with respect to \(b \)

- We can’t use \(b = Ya \) because \(b \) has to be positive

- Solution: use modified gradient descent

- Regular gradient descent rule:

 \[
b^{(k+1)} = b^{(k)} - \eta^{(k)} \nabla_b J(a^{(k)}, b^{(k)})
\]

- If any components of \(\nabla_b J \) are positive, \(b \) will decrease and can possibly become negative

\[
b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 2 \times \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 7 \end{bmatrix}
\]
LDF: Ho-Kashyap Procedure

- start with positive b, follow negative gradient but refuse to decrease any components of b

- This can be achieved by setting all the positive components of $\nabla_b J$ to 0

\[
b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - \| \nabla_b J(a^{(k)}, b^{(k)}) \| \right]
\]

- here $|v|$ denotes vector we get after applying absolute value to all elements of v

\[
b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 2 \times \frac{1}{2} \begin{bmatrix} -3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}
\]

- Not doing steepest descent anymore, but we are still doing descent and ensure that b is positive
LDF: Ho-Kashyap Procedure

\[b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - \| \nabla_b J(a^{(k)}, b^{(k)}) \| \right] \]

\[\nabla_b J = -2(Ya - b) = 0 \]

- Let \(e^{(k)} = Ya^{(k)} - b^{(k)} = -\frac{1}{2} \nabla J_b(a^{(k)}, b^{(k)}) \)

- Then

\[b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[-2e^{(k)} - \| 2e^{(k)} \| \right] \]

\[= b^{(k)} + \eta [e^{(k)} + |e^{(k)}|] \]
LDF: Ho-Kashyap Procedure

- The final Ho-Kashyap procedure:
 0) Start with arbitrary $a^{(1)}$ and $b^{(1)} > 0$, let $k = 1$

 repeat steps (1) through (4)

 1) $e^{(k)} = Ya^{(k)} - b^{(k)}$

 2) Solve for $b^{(k+1)}$ using $a^{(k)}$ and $b^{(k)}$
 $b^{(k+1)} = b^{(k)} + \eta[e^{(k)} + |e^{(k)}|]$

 3) Solve for $a^{(k+1)}$ using $b^{(k+1)}$
 $a^{(k+1)} = (Y^t Y)^{-1}Y^t b^{(k+1)}$

 4) $k = k + 1$

 until $e^{(k)} >= 0$ or $k > k_{\text{max}}$ or $b^{(k+1)} = b^{(k)}$

- For convergence, learning rate should be fixed between $0 < \eta < 1$
\[b^{(k+1)} = b^{(k)} + \eta [e^{(k)} + |e^{(k)}|] \]

- What if \(e^{(k)} \) is negative for all components?
 - \(b^{(k+1)} = b^{(k)} \) and corrections stop

- Write \(e^{(k)} \) out:
 \[e^{(k)} = Ya^{(k)} - b^{(k)} = Y(Y^tY)^{-1}Y^t b^{(k)} - b^{(k)} \]

- Multiply by \(Y^t \):
 \[Y^t e^{(k)} = Y^t \left(Y(Y^tY)^{-1}Y^t b^{(k)} - b^{(k)} \right) = Y^t b^{(k)} - Y^t b^{(k)} = 0 \]

- Thus \(Y^t e^{(k)} = 0 \)
Thus $Y^t e^{(k)} = 0$

Suppose training samples are linearly separable. Then there is a^s and positive b^s s.t.

$$Ya^s = b^s > 0$$

Multiply both sides by $(e^{(k)})^t$

$$0 = (e^{(k)})^t Ya^s = (e^{(k)})^t b^s$$

Either by $e^{(k)} = 0$ or one of its components is positive
LDF: Ho-Kashyap Procedure

- In the linearly separable case,
 - \(e^{(k)} = 0 \), found solution, stop
 - one of components of \(e^{(k)} \) is positive, algorithm continues

- In non separable case,
 - \(e^{(k)} \) will have only negative components eventually, thus found proof of nonseparability
 - No bound on how many iteration need for the proof of nonseparability
LDF: Ho-Kashyap Procedure Example

- Class 1: (6 9), (5 7)
- Class 1: (5 9), (0 10)
- Matrix

$$Y = \begin{bmatrix}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -10
\end{bmatrix}$$

- Start with $$a^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$ and $$b^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

- Use fixed learning $$\eta = 0.9$$

- At the start $$Ya^{(1)} = \begin{bmatrix}
16 \\
13 \\
-15 \\
-11
\end{bmatrix}$$
LDF: Ho-Kashyap Procedure Example

- **Iteration 1:**
 - \(e^{(1)} = Y a^{(1)} - b^{(1)} = \begin{bmatrix} 16 \\ 13 \\ -15 \\ -11 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix} \)
 - solve for \(b^{(2)} \) using \(a^{(1)} \) and \(b^{(1)} \)
 \[
 b^{(2)} = b^{(1)} + 0.9 \left[e^{(1)} + \| e^{(1)} \| \right] = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 0.9 \begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix} + \begin{bmatrix} 15 \\ 12 \\ 16 \\ 12 \end{bmatrix} = \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix}
 \]
 - solve for \(a^{(2)} \) using \(b^{(2)} \)
 \[
 a^{(2)} = (Y^t Y)^{-1} Y^t b^{(2)} = \begin{bmatrix} -2.6 & 4.7 & 1.6 & -0.5 \\ 0.16 & -0.1 & -0.1 & 0.2 \\ 0.26 & -0.5 & -0.2 & -0.1 \end{bmatrix} * \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 34.6 \\ 2.7 \\ -3.8 \end{bmatrix}
 \]
Continue iterations until $Ya > 0$
- In practice, continue until minimum component of Ya is less then 0.01

After 104 iterations converged to solution

$$a = \begin{bmatrix} -34.9 \\ 27.3 \\ -11.3 \end{bmatrix} \quad b = \begin{bmatrix} 28 \\ 23 \\ 1 \\ 147 \end{bmatrix}$$

a does gives a separating hyperplane

$$Ya = \begin{bmatrix} 27.2 \\ 22.5 \\ 0.14 \\ 1.48 \end{bmatrix}$$
Suppose we have \(m \) classes

Define \(m \) linear discriminant functions

\[
g_i(x) = w_i^t x + w_{i0} \quad i = 1, \ldots, m
\]

Given \(x \), assign class \(c_i \) if

\[
g_i(x) \geq g_j(x) \quad \forall j \neq i
\]

Such classifier is called a \textit{linear machine}

A linear machine divides the feature space into \(c \) decision regions, with \(g_i(x) \) being the largest discriminant if \(x \) is in the region \(R_i \)
LDF: Many Classes
LDF: MSE for Multiple Classes

- We still use augmented feature vectors \(y_1, \ldots, y_n \).
- Define \(m \) linear discriminant functions:
 \[
 g_i(y) = a_i^t y \quad i = 1, \ldots, m
 \]
- Given \(y \), assign class \(c_i \) if
 \[
 a_i^t y \geq a_j^t y \quad \forall j \neq i
 \]
- For each class \(i \), makes sense to seek weight vector \(a_i \), s.t.
 \[
 \begin{cases}
 a_i^t y = 1 & \forall y \in \text{class } i \\
 a_i^t y = 0 & \forall y \notin \text{class } i
 \end{cases}
 \]
- If we find such \(a_1, \ldots, a_m \) the training error will be \(0 \)
LDF: MSE for Multiple Classes

- For each class i, find weight vector a_i, s.t.
 \[
 \begin{align*}
 a_i^T y &= 1 & \forall y \in \text{class } i \\
 a_i^T y &= 0 & \forall y \notin \text{class } i
 \end{align*}
 \]

- We can solve for each a_i independently

- Let n_i be the number of samples in class i

- Let Y_i be matrix whose rows are samples from class i, so it has $d+1$ columns and n_i rows

- Let’s pile all samples in n by $d+1$ matrix Y:
 \[
 Y = \begin{bmatrix}
 Y_1 \\
 Y_2 \\
 \vdots \\
 Y_m
 \end{bmatrix}
 =
 \begin{bmatrix}
 \text{sample from class } 1 \\
 \text{sample from class } 1 \\
 \vdots \\
 \text{sample from class } m \\
 \text{sample from class } m
 \end{bmatrix}
 \]
LDF: MSE for Multiple Classes

- Let \(b_i \) be a column vector of length \(n \) which is 0 everywhere except rows corresponding to samples from class \(i \), where it is 1:

\[
b_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix}
\]

- We need to solve: \(Y a_i = b_i \)

\[
\begin{bmatrix}
\text{sample from class 1} \\
\text{sample from class 1} \\
\vdots \\
\text{sample from class } m \\
\text{sample from class } m
\end{bmatrix} \begin{bmatrix} a_{i1} \\ \vdots \\ a_{im} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix}
\]
LDF: MSE for Multiple Classes

- We need to solve \(Y a_i = b_i \)
- Usually no exact solution since \(Y \) is overdetermined
- Use least squares to minimize norm of the error vector \(\| Y a_i - b_i \| \)
- LSE solution with pseudoinverse:
 \[a_i = (Y^t Y)^{-1} Y^t b_i \]
- Thus we need to solve \(m \) LSE problems, one for each class
- Can write these \(m \) LSE problems in one matrix
LDF: MSE for Multiple Classes

- Let’s pile all b_i as columns in n by c matrix B

\[
B = \begin{bmatrix}
 b_1 & \cdots & b_n
\end{bmatrix}
\]

- Let’s pile all a_i as columns in $d + 1$ by m matrix A

\[
A = \begin{bmatrix}
 a_1 & \cdots & a_m
\end{bmatrix} = \begin{bmatrix}
 \text{weights for } a_1 \\
 \text{weights for } a_2 \\
 \vdots \\
 \text{weights for } a_m
\end{bmatrix}
\]

- m LSE problems can be represented in $YA = B$:

\[
\begin{bmatrix}
 \text{sample from class 1} \\
 \text{sample from class 1} \\
 \text{sample from class 2} \\
 \text{sample from class 3} \\
 \text{sample from class 3} \\
 \text{sample from class 3}
\end{bmatrix}
\begin{bmatrix}
 \text{weights for c1} \\
 \text{weights for c2} \\
 \text{weights for c3}
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 1
\end{bmatrix}
\]
Our objective function is:

\[J(A) = \sum_{i=1}^{m} \| Y a_i - b_i \|^2 \]

\(J(A) \) is minimized with the use of pseudoinverse

\[A = (Y^T Y)^{-1} Y B \]
LDF: Summary

- **Perceptron** procedures
 - find a separating hyperplane in the linearly separable case,
 - do not converge in the non-separable case
 - can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point

- **MSE** procedures
 - converge in separable and not separable case
 - may not find separating hyperplane if classes are linearly separable
 - use pseudoinverse if Y^tY is not singular and not too large
 - use gradient descent (Widrow-Hoff procedure) otherwise

- **Ho-Kashyap** procedures
 - always converge
 - find separating hyperplane in the linearly separable case
 - more costly