Today

- Continue Multilayer Neural Networks (MNN)
 - Review MNN structure
 - Backpropagation
 - Training Protocols
MNN: Feed Forward Operation

input layer: d features

hidden layer:

output layer: m outputs, one for each class

bias unit
MNN: Notation for Weights

- Use w_{ji} to denote the weight between input unit i and hidden unit j

 - Input unit i
 - Hidden unit j
 - $x^{(i)}$ to hidden unit j via w_{ji}
 - $w_{ji}x^{(i)}$
 - Hidden unit j to output unit y_j

- Use v_{kj} to denote the weight between hidden unit j and output unit k

 - Hidden unit j to output unit k
 - y_j to output unit k via v_{kj}
 - $v_{kj}y_j$
MNN: Notation for Activation

- Use net_j to denote the activation and hidden unit j

 $$net_j = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

- Use net^*_k to denote the activation at output unit k

 $$net^*_k = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0}$$
Discriminant Function

- Discriminant function for class k (the output of the kth output unit)

$$g_k(x) = z_k = f \left(\sum_{j=1}^{N_H} v_{kj} f \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)$$

- Rich expressive power: every continuous discriminant function can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions.
FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden output unit has sigmoidal activation function $f(\cdot)$. In the case shown, the hidden unit outputs are paired in opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units, any continuous function from input to output can be approximated arbitrarily well by such a network. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.
MNN Activation function

- Must be nonlinear for expressive power larger than that of perceptron
 - If use linear activation function at hidden layer, can only deal with linearly separable classes
 - Suppose at hidden unit j, $h(u) = a_i u$

$$g_k(x) = f \left(\sum_{j=1}^{N_H} v_{kj} h \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)$$

$$= f \left(\sum_{j=1}^{N_H} v_{kj} a_j \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)$$

$$= f \left(\sum_{i=1}^{d} \sum_{j=1}^{N_H} \left(v_{kj} a_j w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)$$

$$= f \left(\sum_{i=1}^{d} \sum_{j=1}^{N_H} \begin{pmatrix} w_i^{new} \\ v_{kj} a_j w_{ji} \end{pmatrix} + \begin{pmatrix} w_0^{new} \\ \sum_{j=1}^{N_H} w_{j0} + v_{k0} \end{pmatrix} \right)$$
MNN Activation function

- In previous example, used discontinuous activation function

\[f(\text{net}_k) = \begin{cases}
1 & \text{if } \text{net}_k \geq 0 \\
-1 & \text{if } \text{net}_k < 0
\end{cases} \]

- We will use gradient descent for learning, so we need to use continuous activation function

- From now on, assume \(f \) is a differentiable function
MNN: Modes of Operation

- Network have two modes of operation:

 - **Feedforward**
 The feedforward operations consists of presenting a pattern to the input units and passing (or feeding) the signals through the network in order to get outputs units (no cycles!)

 - **Learning**
 The supervised learning consists of presenting an input pattern and modifying the network parameters (weights) to reduce distances between the computed output and the desired output
MNN: Class Representation

- Training samples \(x_1, \ldots, x_n \) each of class \(1, \ldots, m \)
- Let network output \(z \) represent class \(c \) as *target* \(t^{(c)} \)

\[
\begin{bmatrix}
z_1 \\
\vdots \\
z_c \\
\vdots \\
z_m \\
\end{bmatrix} = t^{(c)} =
\begin{bmatrix}
0 \\
\vdots \\
1 \\
\vdots \\
0 \\
\end{bmatrix}
\]

Our Ultimate Goal For FeedForward Operation

Sample of class \(c \) \(\xrightarrow{\text{MNN with weights } w_{ji} \text{ and } v_{kj}} \) \(t^{(c)} \)

MNN training to achieve the Ultimate Goal

Modify (learn) MNN parameters \(w_{ji} \) and \(v_{kj} \) so that for each *training* sample of class \(c \) MNN output \(z = t^{(c)} \)
1. Initialize weights w_{ji} and v_{kj} randomly
2. Iterate until a stopping criterion is reached

Choose p

Input sample x_p

MNN with weights w_{ji} and v_{kj}

Output $z = \begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix}$

Compare output z with the desired target t; adjust w_{ji} and v_{kj} to move closer to the goal t (by backpropagation)
BackPropagation

- Learn w_{ji} and v_{kj} by minimizing the training error
- What is the training error?
- Suppose the output of MNN for sample x is z and the target (desired output for x) is t
- Error on one sample: $J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$
- Training error: $J(w, v) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2$
- Use gradient descent:

 $v^{(0)}, w^{(0)} = \text{random}$
 repeat until convergence:

 $w^{(t+1)} = w^{(t)} - \eta \nabla_w J(w^{(t)})$
 $v^{(t+1)} = v^{(t)} - \eta \nabla_v J(v^{(t)})$
BackPropagation

- For simplicity, first take training error for one sample x_i

$$J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

Need to compute

1. partial derivative w.r.t. hidden-to-output weights $\frac{\partial J}{\partial v_{kj}}$

2. partial derivative w.r.t. input-to-hidden weights $\frac{\partial J}{\partial w_{ji}}$

$$z_k = f \left(\sum_{j=1}^{NH} v_{kj} f \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)$$
BackPropagation: Layered Model

activation at hidden unit j

\[net_j = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0} \]

output at hidden unit j

\[y_j = f(net_j) \]

activation at output unit k

\[net_k^* = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0} \]

activation at output unit k

\[z_k = f(net_k^*) \]

objective function

\[J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2 \]

chain rule

\[\frac{\partial J}{\partial v_{kj}} \]

chain rule

\[\frac{\partial J}{\partial w_{ji}} \]
BackPropagation

\[net_k = \sum_{j=1}^{N_h} y_j v_{kj} + v_{k0} \quad \Rightarrow \quad z_k = f(net_k^*) \quad \Rightarrow \quad J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2 \]

- First compute hidden-to-output derivatives

\[
\frac{\partial J}{\partial v_{kj}} = \frac{1}{2} \sum_{c=1}^{m} \frac{\partial}{\partial v_{kj}} (t_c - z_c)^2 = \sum_{c=1}^{m} (t_c - z_c) \frac{\partial}{\partial v_{kj}} (t_c - z_c)
\]

\[
= (t_k - z_k) \frac{\partial}{\partial v_{kj}} (t_k - z_k) = -(t_k - z_k) \frac{\partial}{\partial v_{kj}} (z_k)
\]

\[
= -(t_k - z_k) \frac{\partial z_k}{\partial net_k^*} \frac{\partial net_k^*}{\partial v_{kj}} =
\]

\[
= \begin{cases}
-(t_k - z_k) f'(net_k^*) y_j & \text{if } j \neq 0 \\
-(t_k - z_k) f'(net_k^*) & \text{if } j = 0
\end{cases}
\]
Gradient Descent *Single Sample* Update Rule for hidden-to-output weights v_{kj}

\[
\begin{align*}
\text{j > 0: } & \quad v_{kj}^{(t+1)} = v_{kj}^{(t)} + \eta (t_k - z_k) f'(net_k^*) y_j \\
\text{j = 0 (bias weight): } & \quad v_{k0}^{(t+1)} = v_{k0}^{(t)} + \eta (t_k - z_k) f'(net_k^*)
\end{align*}
\]
BackPropagation

Now compute input-to-hidden \(\frac{\partial J}{\partial w_{ji}} \)

\[
\frac{\partial J}{\partial w_{ji}} = \sum_{k=1}^{m} (t_k - z_k) \frac{\partial}{\partial w_{ji}} (t_k - z_k)
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial w_{ji}} = -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial net_k^*} \frac{\partial net_k^*}{\partial w_{ji}}
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) \frac{\partial net_k^*}{\partial y_j} \frac{\partial y_j}{\partial w_{ji}}
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}
\]

\[
= \begin{cases}
 -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) x^{(i)} & \text{if } i \neq 0 \\
 -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) & \text{if } i = 0
\end{cases}
\]

\[
net_h = \sum_{h=1}^{d} x^{(i)} w_{hi} + w_{h0}
\]

\[
y_j = f(net_j)
\]

\[
net_k^* = \sum_{s=1}^{N_h} y_s v_{ks} + v_{k0}
\]

\[
z_k = f(net_k^*)
\]

\[
J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2
\]
BackPropagation

\[
\frac{\partial J}{\partial w_{ji}} = \begin{cases}
-f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj} & \text{if } i \neq 0 \\
-f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj} & \text{if } i = 0
\end{cases}
\]

Gradient Descent Single Sample Update Rule for input-to-hidden weights \(w_{ji} \)

\[
i > 0: \quad w_{ji}^{(t+1)} = w_{ji}^{(t)} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj}
\]

\[
i = 0 \text{ (bias weight)}: \quad w_{j0}^{(t+1)} = w_{j0}^{(t)} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj}
\]
BackPropagation of Errors

\[
\frac{\partial J}{\partial w_{ji}} = -f'(net_j)x^{(i)}\sum_{k=1}^{m}(t_k - z_k)f'(net^*_k)v_{kj} \\
\frac{\partial J}{\partial v_{kj}} = -(t_k - z_k)f'(net^*_k)y_j
\]

- Name “backpropagation” because during training, errors propagated back from output to hidden layer
Consider update rule for hidden-to-output weights:

\[v_{kj}^{(t+1)} = v_{kj}^{(t)} + \eta(t_k - z_k)f'(net_k^*)y_j \]

Suppose \(t_k - z_k > 0 \)

Then output of the \(k \)th hidden unit is too small: \(t_k > z_k \)

Typically activation function \(f \) is s.t. \(f' > 0 \)

Thus \((t_k - z_k)f'(net_k^*) > 0 \)

There are 2 cases:

1. \(y_j > 0 \), then to increase \(z_k \), should increase weight \(v_{kj} \)
 which is exactly what we do since \(\eta(t_k - z_k)f'(net_k^*)y_j > 0 \)

2. \(y_j < 0 \), then to increase \(z_k \), should decrease weight \(v_{kj} \)
 which is exactly what we do since \(\eta(t_k - z_k)f'(net_k^*)y_j < 0 \)
BackPropagation

- The case \(t_k - z_k < 0 \) is analogous

- Similarly, can show that input-to-hidden weights make sense

- Important: weights should be initialized to random \textit{nonzero} numbers

\[
\frac{\partial J}{\partial w_{ji}} = -f'(net_j)x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}
\]

- if \(v_{kj} = 0 \), input-to-hidden weights \(w_{ji} \) never updated
Training Protocols

- How to present samples in training set and update the weights?

- Three major training protocols:
 1. Stochastic
 - Patterns are chosen randomly from the training set, and network weights are updated after every sample presentation
 2. Batch
 - weights are update based on all samples; iterate weight update
 3. Online
 - each sample is presented only once, weight update after each sample presentation
Stochastic Back Propagation

1. Initialize
 - number of hidden layers n_H
 - weights w, v
 - convergence criterion θ and learning rate η
 - time $t = 0$

2. do
 - $x \leftarrow$ randomly chosen training pattern
 for all $0 \leq i \leq d$, $0 \leq j \leq n_H$, $0 \leq k \leq m$

 $w_{ji} = w_{ji} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$

 $w_{j0} = w_{j0} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$

 $v_{kj} = v_{kj} + \eta(t_k - z_k) f'(net_k^*) y_j$

 $v_{k0} = v_{k0} + \eta(t_k - z_k) f'(net_k^*)$

 $t = t + 1$
 until $\|J\| < \theta$

3. return v, w
Batch Back Propagation

- This is the *true* gradient descent, (unlike stochastic propagation)
- For simplicity, derived backpropagation for a single sample objective function:
 \[J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2 \]
- The full objective function:
 \[J(w, v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2 \]
- Derivative of full objective function is just a sum of derivatives for each sample:
 \[\frac{\partial}{\partial w} J(w, v) = \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial w} \left(\sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2 \right) \]

already derived this
Batch Back Propagation

- For example,

\[
\frac{\partial J}{\partial w_{ji}} = \sum_{p=1}^{n} - f'(net_j) x^{(i)}_{p} \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj}
\]
Batch Back Propagation

1. Initialize n_H, w, v, θ, η, $t = 0$

2. \(\text{do}\)

 \[\begin{align*}
 \Delta v_{kj} &= \Delta v_{k0} = \Delta w_{ji} = \Delta w_{j0} = 0 \\
 \text{for all } 1 \leq p \leq n \\
 \text{for all } 0 \leq i \leq d, \ 0 \leq j \leq n_H, \ 0 \leq k \leq m \\
 \Delta v_{kj} &= \Delta v_{kj} + \eta(t_k - z_k)f'(net_k^*)y_j \\
 \Delta v_{k0} &= \Delta v_{k0} + \eta(t_k - z_k)f'(net_k^*) \\
 \Delta w_{ji} &= \Delta w_{ji} + \eta f'(net_j^*)x_p^{(i)} \sum_{k=1}^{m}(t_k - z_k)f'(net_k^*)v_{kj} \\
 \Delta w_{j0} &= \Delta w_{j0} + \eta f'(net_j^*) \sum_{k=1}^{m}(t_k - z_k)f'(net_k^*)v_{kj} \\
 \end{align*} \]

 \[v_{kj} = v_{kj} + \Delta v_{kj}; \quad v_{k0} = v_{k0} + \Delta v_{k0}; \quad w_{ji} = w_{ji} + \Delta w_{ji}; \quad w_{j0} = w_{j0} + \Delta w_{j0} \]

 \(t = t + 1\)

3. \(\text{return } v, w\)
Training Protocols

1. Batch
 - True gradient descent
2. Stochastic
 - Faster than batch method
 - Usually the recommended way
3. Online
 - Used when number of samples is so large it does not fit in the memory
 - Dependent on the order of sample presentation
 - Should be avoided when possible