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Today

� Continue Multilayer Neural Networks  (MNN)
� Training/testing/validation  curves
� Practical Tips for Implementation
� Concluding Remarks on MNN



MNN Training

training time

Large training 
error: in the 
beginning random 
decision regions

Small training 
error: decision 
regions improve 
with time

Zero training 
error: decision 
regions separate 
training data 
perfectly, but we 
overfited the 
network



MNN Learning Curves
� Training data: data on which learning (gradient descent for 

MNN) is performed
� Test data: used to assess network generalization 

capabilities
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� Training error typically 
goes down, since with 
enough hidden units, can 
find discriminant function 
which classifies training 
patterns exactly

� Test error first goes down, but then goes up since at some 
point we start to overfit the network to the training data



Learning Curves
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� this is a good time to stop training, since after this time we 
start to overfit

� However, stopping criterion is part of training phase, we 
cannot use test data for anything that has to do with the 
learning phase 



Learning Curves

� Create a third separate 
data set called validation 
data: 

� validation data is used to 
determine “parameters”, in 
this case when learning 
should stop

� Stop training after the first local minimum on validation data
� We are assuming performance on test data will be similar to 

performance on validation data  

stop training



Data Sets
� Training data

� data on which learning is performed
� Validation data

� validation data is used to determine any free 
parameters of the classifier 
� k in the knn neighbor classifier
� h for parzen windows
� number of hidden layers in the MNN
� etc

� Test data
� used to assess network generalization capabilities



Practical Tips for BP: Momentum

� Gradient descent finds only a local minima
� not a problem if J(w) is small at a local minima. Indeed, 

we do not wish to find w s.t. J(w) = 0 due to overfitting

J(w)

global minimum

reasonable local 
minimum

� problem if J(w) is 
large at a local 
minimum w

J(w)

global minimum

bad local 
minimum



Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima 
and also speeds up descent in plateau regions
� weight update at time  t is

� at αααα = 0, equivalent to gradient descent
� at αααα = 1, gradient descent is ignored, weight update 

continues in the direction in which it was moving 
previously (momentum)

� usually, αααα is around 0.9
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� add temporal average direction in which weights have 
been moving recently
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Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous f 
however some choices are better than others

� Desirable properties of f :
� Continuous and differentiable Nonlinearity to express 

nonlinear decision boundaries
� Saturation, that is f has minimum and maximum values 

(-a and b).  Keeps and weights w, v bounded, thus 
training time down 

� Monotonicity so that activation function itself does not 
introduce additional local minima

� Linearity for a small values of net, so that network can 
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster 
learning



Practical Tips for BP: Activation Function

� Sigmoid activation function f  satisfies all of the 
above properties
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� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for  –1 < net < 1
� Asymptotic values ����1.716



Practical Tips for BP: Target Values
� For sigmoid function, to represent class c, use
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� Always use values less than asymptotic values       
for target
� For small error, need t to be close to z = f(net) 
� For any finite value of net, f(net) never reaches the 

asymptotic value
� The error will always be too large, training will never 

stop, and weights w,v will go to infinity



Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and 
weight in grams
� Typical sample [length = 0.5, weight = 3000]
� Feature length will be basically ignored by the network
� If length is in fact important, learning will be VERY slow



Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant 
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same 
transformations as the training samples

� Normalize each feature i to be of mean 0 and 
variance 1
� First for each feature i, compute var [x(i)] and mean [x(i)] 
� Then (((( ))))
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� Cannot do this for online version of the algorithm since 
data is not available all at once



Practical Tips for BP:  # of Hidden Units 
� # of input units = number of features, # output units = # 

classes.  How to choose NH, the # of hidden units?

� NH determines the expressive power of the network
� Too small NH may not be sufficient to learn complex 

decision boundaries
� Too large NH may overfit the training data resulting 

in poor generalization



Practical Tips for BP:  # of Hidden Units 
� Choosing NH is not a solved problem
� Rule of thumb

� if total number of training samples is n, choose NH so 
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance 
on the validation data



Practical Tips for BP:  Initializing Weights

� Do not set either w or v to 0
� Rule of thumb for our sigmoid function

� Choose random weights from the range
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Practical Tips for BP:  Learning Rate

� As any gradient descent algorithm, 
backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1
� However we can adjust ηηηη at the training time
� The objective function J should decrease during 

gradient descent
� If it oscillates, ηηηη is too large, decrease it
� If it goes down but very slowly, ηηηη is too 

small,increase it



Practical Tips for BP:  Weight Decay

� To simplify the network and avoid overfitting, it is 
recommended to keep the weights small

� Implement  weight decay after each weight update:
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� Additional benefit is that “unused” weights  grow 
small and may be eliminated altogether
� A weight is “unused” if it is left almost unchanged by the 

backpropagation algorithm



Practical Tips for BP:  # Hidden Layers

� Network with 1 hidden layer has the same 
expressive power as with several hidden layers

� For some applications, having more than 1 hidden 
layer may result in faster learning and less hidden 
units overall

� However networks with more than 1 hidden layer 
are more prone to the local minima problem



MNN as Nonlinear  Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements
nonlinear input mapping ϕϕϕϕ



MNN as Nonlinear  Mapping

� Thus MNN can be thought as learning 2 things at 
the same time
� the nonlinear mapping of the inputs
� linear classifier of the nonlinearly mapped inputs



MNN as Nonlinear  Mapping

original feature 
space x; patterns 
are not linearly 
separable

MNN finds nonlinear 
mapping y=ϕϕϕϕ(x) to 2 
dimensions (2 hidden 
units); patterns are 
almost linearly 
separable

MNN finds nonlinear 
mapping y=ϕϕϕϕ(x) to 3 
dimensions (3 hidden 
units) that; patterns 
are linearly separable



Concluding Remarks

� Advantages
� MNN can learn complex mappings from inputs to 

outputs, based only on the training samples
� Easy to use
� Easy to incorporate a lot of heuristics

� Disadvantages
� It is a “black box”, that is difficult to analyze and predict 

its behavior
� May take a long time to train
� May get trapped in a bad local minima
� A lot of “tricks” to implement for the best performance


