CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 2
Outline

- Review of Linear Algebra
 - vectors and matrices
 - products and norms
 - vector spaces and linear transformations
 - eigenvalues and eigenvectors
- Introduction to Matlab
Why Linear Algebra?

- For each data point, we will represent a set of features as feature vector
 - \([\text{length, weight, color, ...}]\)
- Collected data will be represented as collection of (feature) vectors
 - \([l_1, w_1, c_1, ...] [l_2, w_2, c_2, ...] [l_3, w_3, c_3, ...] \ldots\)
- Linear models are simple and computationally feasible
Vectors

- n-dimensional row vector \(\mathbf{x} = [x_1, x_2, \ldots, x_n] \)
- Transpose of row vector is column vector \(\mathbf{x}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \)
- Vector product (or inner or dot product)
\[
\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = x_1y_1 + x_2y_2 + \ldots + x_ny_n = \sum_{i=1}^{k} x_iy_i
\]
More on Vectors

- **Euclidian norm or length** \(|x| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}\)
- If \(|x|=1\) we say \(x\) is *normalized* or *unit* length
- Angle \(\theta\) between vectors \(x\) and \(y\) \(\cos \theta = \frac{x^T y}{||x||||y||}\)

Thus inner product captures direction relationship between \(x\) and \(y\)
More on Vectors

- Vectors \(x \) and \(y \) are orthonormal if they are orthogonal and \(|x| = |y| = 1\).

- Euclidian distance between vectors \(x \) and \(y \):

\[
|x - y| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
\]
Vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are linearly **dependent** if there exist constants $\alpha_1, \alpha_2, \ldots, \alpha_n$ s.t.

1. $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0}$
2. at least one $\alpha_i \neq 0$

Vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are linearly **independent** if $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0} \Rightarrow \alpha_1 = \ldots = \alpha_n = 0$
Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V

- A set of vectors $\{u_1, u_2, \ldots, u_n\}$ are called a basis for vector space if any v in V can be written as $v = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n$

- u_1, u_2, \ldots, u_n are independent implies they form a basis, and vice versa

- u_1, u_2, \ldots, u_n give an orthonormal basis if
 1. $|u_i| = 1 \quad \forall i$
 2. $u_i \perp u_j \quad \forall i \neq j$
Matrices

- n by m matrix A and its m by n transpose A^\top

\[
A = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1m} \\
 x_{21} & x_{22} & \cdots & x_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \\
A^\top = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{n1} \\
 x_{12} & x_{22} & \cdots & x_{n2} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{1m} & x_{2m} & \cdots & x_{nm}
\end{bmatrix}
\]
Matrix Product

\[AB = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nd}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & \cdots & b_{1m} \\
 b_{21} & \cdots & b_{2m} \\
 b_{31} & \cdots & b_{3m} \\
 \vdots & \ddots & \vdots \\
 b_{d1} & \cdots & b_{dm}
\end{bmatrix}
= \begin{bmatrix}
 c_{ij}
\end{bmatrix} = C
\]

- # of columns of A = # of rows of B
- even if defined, in general \(AB \neq BA \)
Matrices

- **Rank** of a matrix is the number of linearly independent rows (or equivalently columns).
- A square matrix is **non-singular** if its rank equal to the number of rows. If its rank is less than number of rows it is **singular**.
- **Identity matrix** \(I = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix} \)
- Matrix \(A \) is **symmetric** if \(A = A^T \)

\[
\begin{bmatrix}
1 & 2 & 9 & 5 \\
2 & 7 & 4 & 8 \\
9 & 4 & 3 & 6 \\
5 & 8 & 6 & 4
\end{bmatrix}
\]
Matrices

- Matrix A is **positive definite** if
 \[x^T A x = \sum_{i,j} A_{i,j} x_i x_j > 0 \]

- Matrix A is **positive semi-definite** if
 \[x^T A x = \sum_{i,j} A_{i,j} x_i x_j \geq 0 \]

- Trace of a square matrix A is sum on the elements on the diagonal
 \[tr[A] = \sum_{i=1}^{n} a_{ii} \]
Matrices

- **Inverse** of a square matrix A is matrix A^{-1} s.t. $AA^{-1} = I$

- If A is singular or not square, inverse does not exist. **Pseudo-inverse** A^\dagger is defined whenever $A^\top A$ is not singular (it is square)
 - $A^\dagger = (A^\top A)^{-1}A^\top$
 - $A^\dagger A = (A^\top A)^{-1}A^\top A = I$
Matrices

- Determinant of \(n \) by \(n \) matrix \(A \) is

\[
\det(A) = \sum_{k=1}^{n} (-1)^{k+i} a_{ik} \det(A_{ik})
\]

- Where \(A_{ik} \) obtained from \(A \) by removing the \(i \)th row and \(k \)th column

- Absolute value of determinant gives the volume of parallelepiped spanned by the matrix rows

\[
\left\{ \beta_1 a^1 + \beta_2 a^2 + \ldots + \beta_n a^n \right\}
\]

\[
\beta_i \in [0,1] \ \forall i
\]
A linear transformation from vector space \(V \) to vector space \(U \) is a mapping which can be represented by a matrix \(M \):

- \(u = Mv \)

If \(U \) and \(V \) have the same dimension, \(M \) is a square matrix.

In pattern recognition, often \(U \) has smaller dimensionality than \(V \), i.e. transformation \(M \) is used to reduce the number of features.
Eigenvectors and Eigenvalues

Given an n by n matrix A, and a nonzero vector x. Suppose there is λ which satisfies $Ax = \lambda x$

- x is called an eigenvector of A
- λ is called an eigenvalue of A

- Linear transformation A maps an eigenvector v in a simple way. Magnitude changes by λ, direction.

 - If $\lambda > 0$
 - If $\lambda < 0$

Note: $A \mathbf{0} = \lambda \mathbf{0}$ for any λ, not interesting
Eigenvectors and Eigenvalues

- If A is real and symmetric, then all eigenvalues are real (not complex).
- If A is non-singular, all eigenvalues are non-zero.
- If A is positive definite, all eigenvalues are positive.
MATLAB
Starting matlab
- `xterm -fn 12X24`
- `matlab`

Basic Navigation
- `quit`
- `more`
- `help general`

Scalars, variables, basic arithmetic
- Clear
- `+ - * / ^`
- `help arith`

Relational operators
- `==,&,|,~,xor`
- `help relop`

Lists, vectors, matrices
- `A=[2 3;4 5]`
- `A'`

Matrix and vector operations
- `find(A>3), colon operator`
- `* / ^ .* ./ .^`
- `eye(n),norm(A),det(A),eig(A)`
- `max,min,std`
- `help matfun`

Elementary functions
- `help elfun`

Data types
- `double`
- `Char`

Programming in Matlab
- `.m files`
- `scripts`
- `function y=square(x)`
- `help lang`

Flow control
- `if i==1 else end, if else if end`
- `for i=1:0.5:2 ... end`
- `while i == 1 ... end`
- `Return`
- `help lang`

Graphics
- `help graphics`
- `help graph3d`

File I/O
- `load, save`
- `fopen, fclose, fprintf, fscanf`