CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 8

Today

- Continue with Dimensionality Reduction
 - Last lecture: PCA
 - This lecture: Fisher Linear Discriminant

Data Representation vs. Data Classification

- PCA finds the most accurate data representation in a lower dimensional space
 - Project data in the directions of maximum variance
- However the directions of maximum variance may be useless for classification

Fisher Linear Discriminant project to a line which preserves direction useful for *data classification*

 Main idea: find projection to a line s.t. samples from different classes are well separated

bad line to project to, classes are mixed up good line to project to, classes are well separated

- Suppose we have 2 classes and *d*-dimensional samples *x₁,...,x_n* where
 - n₁ samples come from the first class
 - n_2 samples come from the second class
- consider projection on a line
- Let the line direction be given by unit vector **v**

- Scalar $v^t x_i$ is the distance of projection of x_i from the origin
- Thus it **v**^t**x**_i is the projection of **x**_i into a one dimensional subspace

- Thus the projection of sample x_i onto a line in direction v is given by v^tx_i
- How to measure separation between projections of different classes?
- Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\tilde{\mu}_1 \tilde{\mu}_2|$ seems like a good measure

$$\widetilde{\mu}_{1} = \frac{1}{n_{1}} \sum_{x_{i} \in C_{1}}^{n_{1}} \mathbf{v}^{t} \mathbf{x}_{i} = \mathbf{v}^{t} \left(\frac{1}{n_{1}} \sum_{x_{i} \in C_{1}}^{n_{1}} \mathbf{x}_{i} \right) = \mathbf{v}^{t} \mu_{1}$$

similarly,
$$\widetilde{\mu}_{2} = \mathbf{v}^{t} \mu_{2}$$

- How good is $|\tilde{\mu}_1 \tilde{\mu}_2|$ as a measure of separation?
 - The larger $|\hat{\mu}_1 \hat{\mu}_2|$, the better is the expected separation

 the vertical axes is a better line than the horizontal axes to project to for class separability

• however
$$|\hat{\mu}_1 - \hat{\mu}_2| > |\hat{\mu}_1 - \hat{\mu}_2|$$

The problem with $|\tilde{\mu}_1 - \tilde{\mu}_2|$ is that it does not consider the variance of the classes

- We need to normalize $|\tilde{\mu}_1 \tilde{\mu}_2|$ by a factor which is proportional to variance
- Have samples z_1, \dots, z_n . Sample mean is $\mu_z = \frac{1}{n} \sum_{i=1}^n z_i$
- Define their scatter as

$$\boldsymbol{s} = \sum_{i=1}^{n} (\boldsymbol{z}_i - \boldsymbol{\mu}_z)^2$$

- Thus scatter is just sample variance multiplied by n
 - scatter measures the same thing as variance, the spread of data around the mean
 - scatter is just on different scale than variance

- Fisher Solution: normalize $|\tilde{\mu}_1 \tilde{\mu}_2|$ by scatter
- Let $y_i = v^t x_i$, i.e. y_i 's are the projected samples
- Scatter for projected samples of class 1 is $\tilde{s}_1^2 = \sum (y_i - \tilde{\mu}_1)^2$

Scatter for projected samples of class 2 is

$$\widetilde{\boldsymbol{S}}_{2}^{2} = \sum_{\boldsymbol{y}_{i} \in Class \ 2} (\boldsymbol{y}_{i} - \widetilde{\boldsymbol{\mu}}_{2})^{2}$$

- We need to normalize by both scatter of class 1 and scatter of class 2
- Thus Fisher linear discriminant is to project on line in the direction v which maximizes

want projected means are far from each other

$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\boldsymbol{\tilde{\mu}}_1 - \boldsymbol{\tilde{\mu}}_2\right)^2}{\boldsymbol{\tilde{S}}_1^2 + \boldsymbol{\tilde{S}}_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean $\tilde{\mu}_1$

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean $\tilde{\mu}_2$

$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\boldsymbol{\tilde{\mu}}_1 - \boldsymbol{\tilde{\mu}}_2\right)^2}{\boldsymbol{\tilde{S}}_1^2 + \boldsymbol{\tilde{S}}_2^2}$$

If we find v which makes J(v) large, we are guaranteed that the classes are well separated

projected means are far from each other

small \tilde{s}_1 implies that projected samples of class 1 are clustered around projected mean small \tilde{s}_2 implies that projected samples of class 2 are clustered around projected mean

$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\widetilde{\boldsymbol{\mu}}_{1} - \widetilde{\boldsymbol{\mu}}_{2}\right)^{2}}{\widetilde{\boldsymbol{S}}_{1}^{2} + \widetilde{\boldsymbol{S}}_{2}^{2}}$$

- All we need to do now is to express J explicitly as a function of v and maximize it
 - straightforward but need linear algebra and Calculus
- Define the separate class scatter matrices S₁ and S₂ for classes 1 and 2. These measure the scatter of original samples x_i (before projection)

$$S_1 = \sum_{\substack{\mathbf{x}_i \in Class \ 1}} (\mathbf{x}_i - \mu_1) (\mathbf{x}_i - \mu_1)^t$$
$$S_2 = \sum_{\substack{\mathbf{x}_i \in Class \ 2}} (\mathbf{x}_i - \mu_2) (\mathbf{x}_i - \mu_2)^t$$

- Now define the *within* the class scatter matrix $S_w = S_1 + S_2$
- Recall that $\widetilde{\boldsymbol{s}}_1^2 = \sum_{\boldsymbol{y}_i \in Class \ 1} (\boldsymbol{y}_i \widetilde{\boldsymbol{\mu}}_1)^2$
- Using $\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$ and $\hat{\mu}_1 = \mathbf{v}^t \mu_1$

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\substack{\mathbf{y}_{i} \in Class \ 1}} \left(\mathbf{v}^{t} \mathbf{x}_{i} - \mathbf{v}^{t} \boldsymbol{\mu}_{1} \right)^{2}$$

$$= \sum_{\substack{\mathbf{y}_{i} \in Class \ 1}} \left(\mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}) \right)^{t} \left(\mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}) \right)$$

$$= \sum_{\substack{\mathbf{y}_{i} \in Class \ 1}} \left((\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v} \right)^{t} \left((\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v} \right)$$

$$= \sum_{\substack{\mathbf{y}_{i} \in Class \ 1}} \mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v} = \mathbf{v}^{t} \mathbf{S}_{1} \mathbf{v}$$

- Similarly $\tilde{\boldsymbol{s}}_2^2 = \boldsymbol{v}^t \boldsymbol{S}_2 \boldsymbol{v}$
- Therefore $\widetilde{\boldsymbol{S}}_1^2 + \widetilde{\boldsymbol{S}}_2^2 = \boldsymbol{v}^T \boldsymbol{S}_1 \boldsymbol{v} + \boldsymbol{v}^T \boldsymbol{S}_2 \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{S}_W \boldsymbol{v}$
- Define between the class scatter matrix $\boldsymbol{S}_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t$
- S_B measures separation between the means of two classes (before projection)
- Let's rewrite the separations of the projected means $(\tilde{\mu}_1 - \tilde{\mu}_2)^2 = (\mathbf{v}^t \mu_1 - \mathbf{v}^t \mu_2)^2$ $= \mathbf{v}^t (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t \mathbf{v}$ $= \mathbf{v}^t \mathbf{S}_B \mathbf{v}$

Thus our objective function can be written:

$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\widetilde{\boldsymbol{\mu}}_{1} - \widetilde{\boldsymbol{\mu}}_{2}\right)^{2}}{\widetilde{\boldsymbol{s}}_{1}^{2} + \widetilde{\boldsymbol{s}}_{2}^{2}} = \frac{\boldsymbol{v}^{t}\boldsymbol{S}_{B}\boldsymbol{v}}{\boldsymbol{v}^{t}\boldsymbol{S}_{W}\boldsymbol{v}}$$

 Minimize J(v) by taking the derivative w.r.t. v and setting it to 0

$$\frac{d}{dv}J(v) = \frac{\left(\frac{d}{dv}v^{t}S_{B}v\right)v^{t}S_{W}v - \left(\frac{d}{dv}v^{t}S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}}$$
$$= \frac{\left(2S_{B}v\right)v^{t}S_{W}v - \left(2S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}} = 0$$

• Need to solve $\mathbf{v}^{t}\mathbf{S}_{W}\mathbf{v}(\mathbf{S}_{B}\mathbf{v}) - \mathbf{v}^{t}\mathbf{S}_{B}\mathbf{v}(\mathbf{S}_{W}\mathbf{v}) = \mathbf{0}$

$$\Rightarrow \frac{v^{t}S_{W}v(S_{B}v)}{v^{t}S_{W}v} - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v = \lambda S_{W}v$$

generalized eigenvalue problem

 $S_B v = \lambda S_W v$

If S_W has full rank (the inverse exists), can convert this to a standard eigenvalue problem

$$\mathbf{S}_{W}^{-1}\mathbf{S}_{B}\mathbf{v}=\lambda\mathbf{v}$$

But $S_B x$ for any vector x, points in the same direction as $\mu_1 - \mu_2$

$$S_{B} \mathbf{x} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{t} \mathbf{x} = (\mu_{1} - \mu_{2})((\mu_{1} - \mu_{2})^{t} \mathbf{x}) = \alpha(\mu_{1} - \mu_{2})$$

• Thus can solve the eigenvalue problem immediately $\mathbf{v} = \mathbf{S}_{w}^{-1}(\mu_{1} - \mu_{2})$

$$S_{W}^{-1}S_{B}[S_{W}^{-1}(\mu_{1}-\mu_{2})] = S_{W}^{-1}[\alpha(\mu_{1}-\mu_{2})] = \alpha[S_{W}^{-1}(\mu_{1}-\mu_{2})]$$

Fisher Linear Discriminant Example

Data

- Class 1 has 5 samples c₁=[(1,2),(2,3),(3,3),(4,5),(5,5)]
- Class 2 has 6 samples c₂=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]
- Arrange data in 2 separate matrices

$$\boldsymbol{c}_1 = \begin{bmatrix} \boldsymbol{1} & \boldsymbol{2} \\ \vdots & \vdots \\ \boldsymbol{5} & \boldsymbol{5} \end{bmatrix} \qquad \boldsymbol{c}_2 = \begin{bmatrix} \boldsymbol{1} & \boldsymbol{0} \\ \vdots & \vdots \\ \boldsymbol{6} & \boldsymbol{5} \end{bmatrix}$$

 Notice that PCA performs very poorly on this data because the direction of largest variance is not helpful for classification

Fisher Linear Discriminant Example

- First compute the mean for each class $\mu_1 = mean(c_1) = \begin{bmatrix} 3 & 3.6 \end{bmatrix}$ $\mu_2 = mean(c_2) = \begin{bmatrix} 3.3 & 2 \end{bmatrix}$
- Compute scatter matrices S_1 and S_2 for each class $S_1 = 4 * cov(c_1) = \begin{bmatrix} 10 & 8.0 \\ 8.0 & 7.2 \end{bmatrix}$ $S_2 = 5 * cov(c_2) = \begin{bmatrix} 17.3 & 16 \\ 16 & 16 \end{bmatrix}$
- Within the class scatter: $S_w = S_1 + S_2 = \begin{bmatrix} 27.3 & 24 \\ 24 & 23.2 \end{bmatrix}$
 - it has full rank, don't have to solve for eigenvalues
- The inverse of S_W is $S_W^{-1} = inv(S_W) = \begin{vmatrix} 0.39 & -0.41 \\ -0.41 & 0.47 \end{vmatrix}$
- Finally, the optimal line direction \mathbf{v} $\mathbf{v} = \mathbf{S}_{w}^{-1}(\mu_{1} - \mu_{2}) = \begin{bmatrix} -0.79\\ 0.89 \end{bmatrix}$

Fisher Linear Discriminant Example

- Notice, as long as the line has the right direction, its exact position does not matter
- Last step is to compute the actual *1D* vector *y*.
 Let's do it separately for each class

$$Y_{1} = v^{t} c_{1}^{t} = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 \cdots 5 \\ 2 \cdots 5 \end{bmatrix} = \begin{bmatrix} 0.81 \cdots 0.4 \end{bmatrix}$$
$$Y_{2} = v^{t} c_{2}^{t} = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 \cdots 6 \\ 0 \cdots 5 \end{bmatrix} = \begin{bmatrix} -0.65 \cdots -0.25 \end{bmatrix}$$

Multiple Discriminant Analysis (MDA)

- Can generalize FLD to multiple classes
- In case of *c* classes, can reduce dimensionality to 1, 2, 3,..., *c*-1 dimensions
- Project sample x_i to a linear subspace $y_i = V^t x_i$
 - V is called projection matrix

Multiple Discriminant Analysis (MDA)

- Let **n**_i by the number of samples of class **i**
 - and μ_i be the sample mean of class *i*
 - μ be the total mean of all samples

$$\mu_{i} = \frac{1}{n_{i}} \sum_{x \in class} x \qquad \mu = \frac{1}{n} \sum_{x_{i}} x_{i}$$
Objective function:
$$J(V) = \frac{\det(V^{t}S_{B}V)}{\det(V^{t}S_{W}V)}$$

• within the class scatter matrix S_W is

$$S_{W} = \sum_{i=1}^{c} S_{i} = \sum_{i=1}^{c} \sum_{x_{k} \in class \ i} (x_{k} - \mu_{i})(x_{k} - \mu_{i})^{t}$$

between the class scatter matrix S_B is

$$\boldsymbol{S}_{\boldsymbol{B}} = \sum_{i=1}^{\circ} \boldsymbol{n}_{i} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}) (\boldsymbol{\mu}_{i} - \boldsymbol{\mu})^{t}$$

maximum rank is c -1

Multiple Discriminant Analysis (MDA)

$$J(V) = \frac{\det \left(V^{t} S_{B} V \right)}{\det \left(V^{t} S_{W} V \right)}$$

- First solve the *generalized eigenvalue* problem: $S_B v = \lambda S_W v$
- At most *c*-1 distinct solution eigenvalues
- Let $v_1, v_2, ..., v_{c-1}$ be the corresponding eigenvectors
- The optimal projection matrix V to a subspace of dimension k is given by the eigenvectors corresponding to the largest k eigenvalues
- Thus can project to a subspace of dimension at most *c*-1

FDA and MDA Drawbacks

- Reduces dimension only to *k* = *c*-1 (unlike PCA)
 - For complex data, projection to even the best line may result in unseparable projected samples
- Will fail:

2. If J(v) is always large: classes have large overlap when projected to any line (PCA will also fail)

