
CS840a
Learning and Computer Vision

Prof. Olga Veksler

Lecture 2
Some Slides on Optical flow are Some Slides on Optical flow are

from Gary from Gary BradskiBradski
SebastianSebastian ThrunThrun

Today

� Continue introduction to Machine Learning
� Linear Machines
� Start preparation for the first paper

� “Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

� there should be a link to PDF file on our web site

� Next time:
� Discuss the paper
� Prepare for the second paper

Last Time: Supervised Learning
� Training samples (or examples) X1,X2,…Xn

� Each example is typically multi-dimensional
� Xi

1, Xi
2 ,…, Xi

d are typically called features, Xi is sometimes
called a feature vector

� How many features and which features do we take?
� Know desired output for each example (labeled

samples) Y1,Y2,…Yn

� This learning is supervised (“teacher” gives desired outputs).
� Yi are often one-dimensional, but can be multidimensional

� Two types of supervised learning:
� Classification:

� Yi takes value in finite set and typically called a label or a class
� Example: Y ∈{sunny,cloudy,raining}

� Regression, or function fitting:
� Yi continuous. In this case, it is typically called an output value
� Example: Y=temperature ∈[-60,60]

Regression vs. Classification

x

Y

f(X,W)

� Learn (fit) function f(X,W)

x1

x2

� Convenient to define decision
boundary between classes

� X is on decision boundary if
f(X,W) is discontinuous at X

Last Time: Supervised Learning

� Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
� In classification want f(X,W) = label of X
� How do we choose f?

� when we choose a particular f, we are making implicit
assumptions about our problem

� W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
� W = [w1,w2,…wk]

Training and Testing
� There are 2 phases, training and testing

� Divide all labeled samples X1,X2,…Xn into 2 sets,
training set and testing set

� Training phase is for “teaching” our machine
(finding optimal weights W)

� Testing phase is for evaluating how well our
machine works on unseen examples

� Training phase
� Find the weights W s.t. f(Xi,W) = Yi “as much as

possible” for the training samples Xi

� “as much as possible” needs to be defined
� Training can be quite complex and time-consuming

Testing
� Testing phase

� The goal is to design machine which performs well
on unseen examples (which are typically different
from labeled examples)

� Evaluate the performance of the trained machine
f(X,W) on the testing samples (unseen labeled
samples)

� Testing the machine on unseen labeled examples
lets us approximate how well it will perform in
practice

� If testing results are poor, may have to go back to
the training phase and redesign f(X,W)

Loss Function
� How do we quantify what it means for the machine

f(X,W) do well in the training and testing phases?
� f(X,W) has to be “close” to the true output on X
� Define Loss (or Error) function L

� This is up to the designer (that is you)
� Typically first define per-sample loss L(Xi,Yi,W)

� Some examples:
� for classification, L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi],

where I[true] = 1, I[false] = 0
� we just care if the sample has been classified correctly

� For continuous Y, L(Xi,Yi,W) =|| f(Xi,W) -Yi ||2 ,
� how far is the estimated output from the correct one?

� Then loss function L = Σi L(Xi,Yi,W)
� Number of missclassified example for classification
� Sum of distances from the estimated output to the correct

output

Generalization and Overfitting
� Generalization is the ability to produce correct output

on previously unseen examples
� In other words, low error (loss) on unseen examples
� Good generalization is the main goal of ML

� Low train error does not necessarily imply that we will
have low test error
� Very easy to produce f(X,W) which is perfect on training

samples
� “memorize” all the training samples and output their correct label
� random label on unseen examples
� No training error but horrible test error

� Overfitting
� when the machine performs well on training data but poorly

on testing data

bass

salmon

Separating Salmon from Bass
� Use length and lightness as features
� Feature vector [length,lightness]

length

lig
ht

ne
ss

decision
boundary

� ������������	
��

	
�� �

decision regions

Better decision boundary

� Ideal decision boundary, 0% classification error

length

lig
ht

ne
ss

Test Classifier on New Data
� Classifier should perform well on new data
� Test “ideal” classifier on new data: 25% error

length

lig
ht

ne
ss

What Went Wrong?

� Poor generalization

complicated
boundary

� Complicated boundaries do not generalize well to
the new data, they are too “tuned” to the particular
training data, rather than some true model which
will separate salmon from sea bass well.
� This is called overfitting the data

Generalization
training data testing data

� Simpler decision boundary does not perform ideally
on the training data but generalizes better on new
data

� Favor simpler classifiers
� William of Occam (1284-1347): “entities are not

to be multiplied without necessity”

Linear Machine, Continuous Y
� f(X,W) = w0+Σi=1,2,...d wixi

x

y� w0 is called bias
� In vector form, if we let

X = (1,x1,x2,…,xd), then
f(X,W) = WTX
� notice abuse of notation

� This is standard linear
regression (line fitting)
� assume

L(Xi,Yi,W) = || f(Xi,W) -Yi ||2

� optimal W can be found by
solving linear system of
equations W* = [ΣXi (Xi)T]-1 ΣYiXi

Linear Machine: binary Y
� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� sign(positive) = 1,
sign(negative) = -1

� w0 is called bias

� In vector form, if we let
X = (1,x1,x2,…,xd) then
f(X,W) = sign(WTX)

WTX < 0

WTX > 0

x1

x2

decision boundary WTX = 0

W

Perceptron Learning Procedure (Rosenblatt 1957)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� Let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi]. How do we learn W?
� A solution:
� Iterate over all training samples

� if f(X,W)=Y (correct label), do nothing
� else W = W + [Y-f(WTX)]X

X

W

before

X

W

after

Perceptron Learning Procedure (Rosenblatt 1957)

� Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

� Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

� For most interesting problems the samples are not
linearly separable

� Is there a way to learn W in non-separable case?
� Remember, it’s ok to have training error, so we don’t have

to have “perfect” classification

Optimization
� Need to minimize a function of many variables

(((()))) (((())))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero

(((())))

(((())))
(((()))) 0

1

====∇∇∇∇====

����
����
����
����
����

����

����

����
����
����
����
����

����

����

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

xJ

xJ
x

xJ
x

d

�

� However solving analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient

(((())))
(((()))) (((())))��������

����
				

====++++++++
====++++++++

0xlogxxcos

0exxsin
2
4

5

2
4

x33
2

2
1

x3
2

2
1

� Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent
� Gradient points in direction of steepest increase of

J(x), and in direction of steepest decrease
(((())))xJ∇∇∇∇

a

(((())))a
dx
dJ−−−−J(x)

x

one dimension two dimensions

(((())))aJ∇∇∇∇−−−−

a

a

(((())))a
dx
dJ−−−−

a

(((())))a
dx
dJ−−−−

(((())))xJ∇∇∇∇−−−−

Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((())))(((())))2xJ∇∇∇∇−−−−

(((()))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((())))(((()))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1 and x(1) to some initial guess for the weight vector
while (((()))) (((())))(((()))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k) (update rule)(((())))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1

Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function

x((((1) x((((2) x((((3) x((((k)

Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate)
� If ηηηη is too small, need too many iterations

� If ηηηη is too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

J(x)

x

“Optimal” W with Gradient Descent

� Then L(W) = |M(W)|, the size of M(W)

� Let M be the set of examples misclassified by W
(((()))) {{{{ }}}}iiTi YXWtsXsampleWM ≠≠≠≠==== ..

� L(W) is piecewise constant,
gradient descent is useless

W

M(W)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� If we let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi], then L(W) is the

number of missclassified examples

“Optimal” W with Gradient Descent

� Better choice:
(((()))) (((())))����

∈∈∈∈

−−−−====
MX

iiT

i

YXWWL

� L(W,Xi,Yi) is proportional
to the distance of
misclassified example to
the decision boundary

W
W

TX
/ ||W

||

X
� If Xi is misclassified, (WTXi)Yi ≤ 0

� Thus L(W,Xi,Yi) ≥ 0

W

L(W)

� L(W)=ΣL(W,Xi,Yi) is
piecewise linear and thus
suitable for gradient decent

Batch Rule

� Gradient of L is (((()))) (((())))YXWL
MX
����

∈∈∈∈
−−−−====∇∇∇∇

� Thus gradient decent batch update rule for L(W) is:
(((()))) (((()))) (((())))����

∈∈∈∈

++++ ++++====
MY

kkk XYWW ηηηη1

� It is called batch rule because it is based on all
misclassified examples

� M are samples misclassified by W
� It is not possible to solve �L(W) = 0 analytically

(((())))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)

(((()))) (((())))����
∈∈∈∈

−−−−====
MX

Tii YXWYXWL ,,

Single Sample Rule

� Thus gradient decent single sample rule for L(W) is:

� apply for any sample X misclassified by W(k)

� must have a consistent way of visiting samples

(((()))) (((()))) (((()))) (((())))XYWW kkk ηηηη++++====++++1

Convergence
� If classes are linearly separable, and ηηηη((((k)))) is fixed to a

constant, i.e. ηηηη((((1)))) =ηηηη((((2)))) =…=ηηηη((((k)))) =c (fixed learning rate)
� both single sample and batch rules converge to a correct

solution (could be any W in the solution space)
� If classes are not linearly separable:

� Single sample algorithm does not stop, it keeps looking for
solution which does not exist

� However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

(((()))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example, (((())))
(((())))

k
k

1ηηηηηηηη ====
� for this learning rate convergence in the linearly separable

case can also be proven

Learning by Gradient Descent

� Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

� Pick differentiable per-sample loss function L(Xi,Yi,W)
� We need to find W that minimizes L = Σi L(Xi,Yi,W)
� Use gradient-based minimization:

� Batch rule: W = W - η�L(W)
� Or single sample rule: W = W - η�L (Xi,Yi,W)

Important Questions

� How do we choose the feature vector X?
� How do we split labeled samples into training/testing

sets?
� How do we choose the machine f(X,W)?
� How do we choose the loss function L(Xi,Yi,W)?
� How do we find the optimal weights W?

Next Time

� Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

� Bring in a typed discussion on this paper
� Should be only a few paragraphs long, definitely

less than 1 side of a page (typed)
� Your discussion should have the following:

� very short description of the problem paper tries to solve
� What makes this problem difficult?
� Short description of the method used in the paper to

solve the problem
� What is the contribution of the paper (what new does it

do)?
� Do the experimental results look “good” to you?

Optical Flow

� Suppose we have a video sequence
� Optical flow is the apparent motion of brightness

patterns from one frame to the next

� Many algorithms are available to compute optical
flow, however up to date the results are not very
reliable

Optical Flow

optical flow constraint equation

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow vs. Motion Field

� Often (but not always) optical flow corresponds to the
true motion of the scene

Human Motion SystemHuman Motion System
Illusory SnakesIllusory Snakes

from Gary from Gary BradskiBradski and Sebastian and Sebastian ThrunThrun

Other Concepts to Review

� Image gradient
� Cross-correlation
� Convolution
� Gaussian smoothing (blurring)

