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Today

� Continue introduction to Machine Learning
� Linear Machines
� Start preparation for the first paper

� “Recognizing Action at a Distance” by A. Efros, 
A.Berg, G. Mori, Jitendra Malik

� there should be a link to PDF file on our web site

� Next time:
� Discuss the paper
� Prepare for the second paper



Last Time: Supervised Learning
� Training samples (or examples) X1,X2,…Xn

� Each example is typically multi-dimensional
� Xi

1, Xi
2 ,…, Xi

d are typically called features, Xi is sometimes 
called a feature vector

� How many features and which features do we take?
� Know desired output for each example (labeled 

samples) Y1,Y2,…Yn

� This learning is supervised (“teacher” gives desired outputs). 
� Yi are often one-dimensional, but can be multidimensional

� Two types of supervised learning:
� Classification: 

� Yi takes value in finite set and typically called a label or a class
� Example: Y ∈{sunny,cloudy,raining} 

� Regression, or function fitting:
� Yi  continuous.  In this case, it is typically called an output value
� Example: Y=temperature ∈[-60,60]



Regression vs. Classification

x

Y

f(X,W)

� Learn (fit) function f(X,W)

x1

x2

� Convenient to define decision 
boundary  between classes

� X is on decision boundary if 
f(X,W) is discontinuous at X



Last Time: Supervised Learning

� Wish to design a machine f(X,W) s.t.        
f(X,W) = true output value at X
� In classification want f(X,W) = label of X
� How do we choose f?

� when we choose a particular f, we are making implicit 
assumptions about our problem

� W is typically multidimensional vector of weights 
(also called parameters) which enable the machine 
to “learn”
� W = [w1,w2,…wk]



Training and Testing
� There are 2 phases, training and testing

� Divide all labeled samples X1,X2,…Xn into 2 sets, 
training set and testing set 

� Training phase is for “teaching” our machine 
(finding optimal weights W)

� Testing phase is for evaluating how well our 
machine works on unseen examples

� Training phase
� Find the weights W s.t. f(Xi,W) = Yi “as much as 

possible” for the training samples Xi

� “as much as possible” needs to be defined
� Training can be quite complex and time-consuming



Testing
� Testing phase

� The goal is to design machine which performs well 
on unseen examples (which are typically different 
from labeled examples)

� Evaluate the performance of the trained machine 
f(X,W) on the testing samples (unseen labeled 
samples) 

� Testing the machine on unseen labeled examples 
lets us approximate how well it will perform in 
practice 

� If testing results are poor, may have to go back to 
the training phase and redesign f(X,W)



Loss Function
� How do we quantify what it means for the machine 

f(X,W) do well in the training and testing phases?
� f(X,W) has to be “close” to the true output on X
� Define Loss (or Error) function L

� This is up to the designer (that is you)
� Typically first define per-sample loss L(Xi,Yi,W)

� Some examples:
� for classification, L(Xi,Yi,W)  = I[f(Xi,W) ≠ Yi],                              

where I[true] = 1, I[false] = 0
� we just care if the sample has been classified correctly

� For continuous Y, L(Xi,Yi,W) =|| f(Xi,W) -Yi ||2 ,
� how far is the estimated output from the correct one?

� Then loss function L = Σi L(Xi,Yi,W)
� Number of missclassified example for classification
� Sum of distances from the estimated output to the correct 

output



Generalization and Overfitting
� Generalization is the ability to produce correct output 

on previously unseen examples
� In other words, low error (loss) on unseen examples
� Good generalization is the main goal of ML

� Low train error does not necessarily imply that we will 
have low test error
� Very easy to produce f(X,W) which is perfect on training 

samples
� “memorize” all the training samples and output their correct label
� random label on unseen examples
� No training error but horrible test error 

� Overfitting
� when the machine performs well on training data but poorly 

on testing data



bass

salmon

Separating Salmon from Bass
� Use length and lightness as features
� Feature vector [length,lightness]

length

lig
ht

ne
ss

decision 
boundary

� ������������	
��

	
�� �

decision regions



Better decision boundary

� Ideal decision boundary, 0% classification error
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Test Classifier on New Data
� Classifier should perform well on new data
� Test “ideal” classifier on new data: 25% error
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What Went Wrong?

� Poor generalization

complicated
boundary

� Complicated boundaries do not generalize well to 
the new data, they are too “tuned” to the particular 
training data, rather than some true model which 
will separate salmon from sea bass well.
� This is called overfitting the data



Generalization
training data testing data

� Simpler decision boundary does not perform ideally 
on the training data but generalizes better on new 
data

� Favor simpler classifiers
� William of Occam (1284-1347): “entities are not 

to be multiplied without necessity”



Linear Machine, Continuous Y
� f(X,W) = w0+Σi=1,2,...d wixi

x

y� w0 is called bias
� In vector form, if we let 

X = (1,x1,x2,…,xd), then 
f(X,W) = WTX
� notice abuse of notation

� This is standard linear 
regression (line fitting)
� assume                   

L(Xi,Yi,W) = || f(Xi,W) -Yi ||2

� optimal W can be found by 
solving linear system of 
equations W* = [ΣXi (Xi )T]-1 ΣYiXi



Linear Machine: binary Y
� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� sign(positive) = 1, 
sign(negative) = -1

� w0 is called bias

� In vector form, if we let 
X = (1,x1,x2,…,xd) then 
f(X,W) = sign(WTX)

WTX < 0

WTX > 0

x1

x2

decision boundary WTX = 0

W



Perceptron Learning Procedure (Rosenblatt 1957)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� Let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi]. How do we learn W?
� A solution: 
� Iterate over all training samples

� if f(X,W)=Y (correct label), do nothing
� else W = W + [Y-f(WTX)]X

X

W

before

X

W

after



Perceptron Learning Procedure (Rosenblatt 1957)

� Amazing fact: If the samples are linearly separable, 
the perceptron learning procedure will converge to a 
solution (separating hyperplane) in a finite amount of 
time

� Bad news: If the samples are not linearly separable, 
the perceptron procedure will not terminate, it will go 
on looking for a solution which does not exist!

� For most interesting problems the samples are not 
linearly separable

� Is there a way to learn W in non-separable case?
� Remember, it’s ok to have training error, so we don’t have 

to have “perfect” classification



Optimization
� Need to minimize a function of many variables
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� We know how to minimize J(x)
� Take partial derivatives and set them to zero
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� However solving  analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient
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� Sometimes it is not even possible to write down an analytical 
expression for the derivative, we will see an example later today



Optimization: Gradient Descent
� Gradient              points in direction of steepest increase of  

J(x), and                   in direction of  steepest decrease
(((( ))))xJ∇∇∇∇
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Optimization: Gradient Descent
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Gradient Descent for minimizing any function J(x)
set k = 1  and x(1) to some initial guess for the weight vector
while (((( )))) (((( ))))(((( )))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k) (update rule)(((( ))))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1



Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local 
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular 
because it is simple and applicable to any 
differentiable function

x((((1) x((((2) x((((3) x((((k)



Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate )
� If ηηηη is too small, need too many iterations

� If ηηηη is too large may 
overshoot the minimum 
and possibly never find it  
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

J(x)

x



“Optimal” W with Gradient Descent

� Then L(W) = |M(W)|, the size of M(W)

� Let M be the set of examples misclassified by W
(((( )))) {{{{ }}}}iiTi YXWtsXsampleWM ≠≠≠≠==== ..

� L(W) is piecewise constant, 
gradient descent is useless

W

M(W)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� If we let  L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi], then L(W) is the 

number of missclassified examples



“Optimal” W with Gradient Descent

� Better choice:
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� L(W,Xi,Yi) is proportional 
to the distance of 
misclassified example to 
the  decision boundary

W
W

TX
/ ||W

||

X
� If Xi is misclassified, (WTXi)Yi ≤ 0

� Thus L(W,Xi,Yi) ≥ 0

W

L(W) 

� L(W)=ΣL(W,Xi,Yi) is 
piecewise linear and thus 
suitable for gradient decent



Batch Rule

� Gradient of L is (((( )))) (((( ))))YXWL
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� Thus gradient decent batch update rule for L(W) is:
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� It is called batch rule because  it is based on all 
misclassified examples

� M are samples misclassified by W
� It is not possible to solve �L(W) = 0 analytically

(((( ))))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)
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Single Sample Rule

� Thus gradient decent single sample rule for L(W) is:

� apply for any sample X misclassified by W(k)

� must have a consistent way of visiting samples

(((( )))) (((( )))) (((( )))) (((( ))))XYWW kkk ηηηη++++====++++1



Convergence
� If classes are linearly separable, and ηηηη((((k)  )  )  )  is fixed to a 

constant, i.e. ηηηη((((1)))) =ηηηη((((2) ) ) ) =…=ηηηη((((k) ) ) ) =c  (fixed learning rate)
� both single sample and batch rules converge to a correct 

solution (could be any W in the solution space)
� If classes are not linearly separable:

� Single sample algorithm does not stop, it keeps looking for 
solution which does not exist

� However by choosing appropriate learning rate, 
heuristically stop algorithm at hopefully good stopping point

(((( )))) ∞∞∞∞→→→→→→→→ kask 0ηηηη
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� for this learning rate convergence in the linearly separable 

case can also be proven 



Learning by Gradient Descent

� Suppose we suspect that the machine has to have functional 
form f(X,W), not necessarily linear

� Pick differentiable per-sample loss function L(Xi,Yi,W)
� We need to find W that minimizes L = Σi L(Xi,Yi,W)
� Use gradient-based minimization:

� Batch rule: W = W - η�L(W)
� Or single sample rule: W = W - η�L (Xi,Yi,W)



Important Questions

� How do we choose the feature vector X?
� How do we split labeled samples into training/testing 

sets?
� How do we choose the machine f(X,W)?
� How do we choose the loss function L(Xi,Yi,W)?
� How do we find the optimal weights W?



Next Time

� Paper:“Recognizing Action at a Distance” by A. Efros, 
A.Berg, G. Mori, Jitendra Malik

� Bring in a typed discussion on this paper
� Should be only a few paragraphs long, definitely 

less than 1 side of a page (typed)
� Your discussion should have the following: 

� very short description of the problem paper tries to solve
� What makes this problem difficult?
� Short description of the method used in the paper to 

solve the problem
� What is the contribution of the paper (what new does it 

do)? 
� Do the experimental results look “good” to you?



Optical Flow

� Suppose we have a video sequence
� Optical flow is the apparent motion of brightness 

patterns from one frame to the next

� Many algorithms are available to compute optical 
flow, however up to date the results are not very 
reliable



Optical Flow

optical flow constraint equation



* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow vs. Motion Field

� Often (but not always) optical flow corresponds to the 
true motion of the scene



Human Motion SystemHuman Motion System
Illusory SnakesIllusory Snakes

from Gary from Gary BradskiBradski and Sebastian and Sebastian ThrunThrun



Other Concepts to Review

� Image gradient
� Cross-correlation
� Convolution
� Gaussian smoothing (blurring)


