
1

CS840a
Learning and Computer Vision

Prof. Olga Veksler

Lecture 4
Bagging and Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:
1) Performance evaluation methods

� cross-validation
2) Ensemble Learning

� Bagging
� Boosting

� Watch SVM/Boosting video lecture by Trevor
Hastie

� Next time two papers:
� “Rapid Object Detection using a Boosted Cascade of

Simple Features” by P. Viola and M. Jones from
CVPR2001

� “Detecting Pedestrians Using Patterns of Motion and
Appearance” by P. Viola, M.J.Jones, D. Snow

2

Performance Evaluation

� ������������	�
��

���������������������
��������
�����������

� �������
�������������������������������	������������
������
��
��������������
��������

� �����������������������������
�������������
� ��� ������
����������������
��������

� !
����������������
�����	
���������

�
�"�

�
�������������
���#�����������
��
�
������
����

�
�"�

�
���������������
����#

Cross Validation

� �
����$�������������	�����������
�
������
����
	�
��

�������������������%�
���&���������

� �'������
����$���������
� (���

�)�	��������
��*�

�+����������� i �������������������������
���������������
��������
�����������,�+
�����������������
���������������
���������

�
�����������i

� -��
�����������������

�
��
�
����������
������

� .��������������
��������������
� �
���'������������������/��

3

Ensemble Learning: Bagging and Boosting
� So far we have talked about design of a single classifier

that generalizes well (want to “learn” f(x))
� From statistics, we know that it is good to average your

predictions (reduces variance)
� Bagging

� reshuffle your training data to create k different trainig sets and
learn f1(x),f2(x),…,fk(x)

� Combine the k different classifiers by majority voting
fFINAL(x) =sign[Σ 1/k fi(x)]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples
� Weighted majority voting, the weight of individual classifier is

proportional to its accuracy
� Ada-boost (1996) was influenced by bagging, and it is superior

to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is
constructed for each of these training sets, using the same
classification algorithm

� To classify an unknown sample x, let each classifier predict.
� The bagged classifier fFINAL(x) then combines the predictions

of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

4

Boosting: motivation

� It is usually hard to design an accurate classifier which
generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers
� A classifier is weak if it is only slightly better than random

guessing

� Can we combine several weak classifiers to produce an
accurate classifier?
� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification
problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function:

(((()))) (((())))����
====

====
T

t
tt xfxg

1

αααα

� where ft(x) is the “weak” classifier
� As usual, the final classifier is the sign of the

discriminant function, that is ffinal(x) = sign[g(x)]

5

Idea Behind Ada Boost

� Algorithm is iterative
� Maintains distribution of weights over the training

examples
� Initially distribution of weights is uniform
� At successive iterations, the weight of misclassified

examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at
least slightly better than random
� will work if the error rate of ft(x) is less than 0.5 (0.5 is the

error rate of a random guessing classifier for a 2-class
problem)

� Can be applied to boost any classifier, not
necessarily weak

6

Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training
points � d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute the error rate �t as
�t= �i=1…N dt(xi) � I[yi � ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – �t)/�t)

� For each xi , dt+1(xi) = dt(xi) � exp[αt � I(yi � ft(xi))]
� Normalize dt+1(xi) so that �i=1 dt+1(xi) = 1

� fFINAL(x) =sign [� αt ft (x)]

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as
�t= � dt(xi) � I[yi � ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – �t)/�t)

� For each xi , dt+1(xi) = dt(xi) � exp[αt � I(yi � ft(xi))]
� Normalize dt+1(xi) so that �t+1d(xi) = 1

� fFINAL(x) =sign [� αt ft (x)]

� If the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution dt(x)

7

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as

�t= � dt(xi) � I[yi � ft(xi)]
� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – �t)/�t)
� For each xi , dt+1(xi) = dt(xi) � exp[αt � I(yi � ft(xi))]
� Normalize dt+1(xi) so that � dt+1(xi) = 1

� fFINAL(x) =sign [� αt ft (x)]

� Since the weak classifier is better than random, we
expect �t < 1/2

Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as
�t= � d(xi) � I(yi � ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – �t)/�t)

� For each xi , dt+1(xi) = dt(xi) � exp[αt � I(yi � ft(xi))]
� Normalize dt+1(xi) so that � dt+1(xi) = 1

� fFINAL(x) =sign [� αtft (x)]

� Recall that �t < ½
� Thus (1- �t)/ �t > 1 � αt > 0
� The smaller is �t, the larger is αt, and thus the more

importance (weight) classifier ft(x) gets in the final classifier
fFINAL(x) =sign [� αt ft (x)]

8

Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as
�t= � dt (xi) � I(yi � ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – �t)/�t)

� For each xi , dt+1(xi) = dt(xi) � exp[αt � I(yi � ft(xi))]
� Normalize dt+1(xi) so that �dt+1(xi) = 1

� fFINAL(x) =sign [� αt ft (x)]

� Weight of misclassified examples is increased and the
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, ht(x) is used instead of ft(x),
and D instead of d

9

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2

10

AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

11

AdaBoost Comments

� It can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

(((())))����−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at
round t (weak classifier ft)

AdaBoost Comments
� But we are really interested in the generalization

properties of fFINAL(x), not the training error
� AdaBoost was shown to have excellent generalization

properties in practice, in fact in the beginning
researchers thought it does not overfit data
� It turns out it does overfit data eventually, if you run it really

long

� It can be shown that boosting “aggressively”
increases the margins of training examples, as
iterations proceed
� margins continue to increase even when training error

reaches zero
� Helps to explain empirically observed phenomena: test error

continues to drop even after training error reaches zero

12

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin
0.00.07.7%margins≤0.5
3.13.38.4test error
0.00.00.0training error
10001005epoch

13

Boosting As Additive Model

� The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

);()(
1

tt

T

t
t xfxg γγγγαααα����

====
====

);()()(1 ttttt xfxgxg γγγγαααα++++==== −−−−

� �
= =

�
�

�
�
�

�

=

N

1i

M

1t
titti

},{
);x(f,yLmin

T
1ttt

γα
γα

� The process is iterative and can be expressed as
follows:

� Typically we would try to minimize a loss function
on the N training examples

fixed

Boosting As Additive Model

� Simple case: squared-error loss
2))x(fy(

2
1))x(f,y(L −=

=+−));x(f)x(g,y(L titti1ti γα
()2

titti1ti);x(f)x(gy γα−−= −

� Forward stage-wise modeling amounts to
just fitting the residuals from previous
iteration:

� Forward stage-wise optimization seems to
produce classifier with better generalization,
it is not as prone to overfitting

14

Boosting As Additive Model

� It can be shown that AdaBoost uses forward
stage-wise modeling under the following loss
function:
� L(y, f (x)) = exp(-y � f (x)) - the exponential loss function

����

����

����

====
−−−−

====
−−−−

====

⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−====

⋅⋅⋅⋅++++⋅⋅⋅⋅−−−−====

N

i
imiimi

f

N

i
imimi

f

i

N

i
i

f

xfyxgy

xfxgy

xfyL

t

t

1
1

,

1
1

,

1

))(exp())(exp(minarg

)])()([exp(minarg

))(,(minarg

αααα

αααα

αααα

αααα

Practical Advantages of AdaBoost

� fast
� simple
� Has only one parameter to tune (T)
� flexible: can be combined with any classifier
� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

� finds outliers
� The hardest examples are frequently the “outliers”

15

Caveats

� performance depends on data & weak learner
� AdaBoost can fail if

� weak hypothesis too complex (overfitting)
� weak hypothesis too weak (γt→0 too quickly),

� underfitting
� Low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to noise

