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CS840a 
Learning and Computer Vision 

Prof. Olga Veksler

Lecture 4
Bagging and Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:
1) Performance evaluation methods

� cross-validation
2) Ensemble Learning

� Bagging 
� Boosting

� Watch SVM/Boosting video lecture by Trevor 
Hastie  

� Next time two papers:
� “Rapid Object Detection using a Boosted Cascade of 

Simple Features” by P. Viola and M. Jones from 
CVPR2001

� “Detecting Pedestrians Using Patterns of Motion and 
Appearance” by P. Viola, M.J.Jones, D. Snow
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Performance Evaluation
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Cross Validation

� �
����$�������������	�����������
�
������
����
	�
��

�������������������%�
���&���������

� �'������
����$���������
� (�����������������������������������������

� )�	��������
��*�

�+����������� i �������������������������
���������������
��������
�����������,�+
�����������������
���������������
���������

�
�����������i 

� -��
�����������������

�
��
�
����������
������

� .��������������
��������������
� �
���'������������������/��



3

Ensemble Learning: Bagging and Boosting
� So far we have talked about design of a single classifier 

that generalizes well (want to “learn”  f(x) )
� From statistics, we know that it is good to average your 

predictions (reduces variance)
� Bagging

� reshuffle your training data to create k different trainig sets and  
learn f1(x),f2(x),…,fk(x) 

� Combine the k different classifiers by majority voting
fFINAL(x) =sign[Σ 1/k fi(x) ]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples
� Weighted majority voting, the weight of individual classifier is

proportional to its accuracy
� Ada-boost (1996) was influenced by bagging, and it is  superior 

to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is 
constructed for each of these training sets, using the same 
classification algorithm 

� To classify an unknown sample x, let each classifier predict.  
� The bagged classifier fFINAL(x) then combines the predictions 

of the individual classifiers to generate the final outcome, 
frequently this combination is simple voting
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Boosting: motivation

� It is usually hard to design an accurate classifier which 
generalizes well

� However it is usually easy to find many “rule of thumb” 
weak classifiers
� A classifier is weak if it is only slightly better than random 

guessing

� Can we combine several weak classifiers to produce an 
accurate classifier?
� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification 
problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function: 
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� where ft(x) is the “weak” classifier
� As usual, the final classifier is the sign of the 

discriminant function, that is ffinal(x) = sign[g(x)]
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Idea Behind Ada Boost

� Algorithm is iterative
� Maintains distribution of weights over the training 

examples
� Initially distribution of weights is uniform
� At successive iterations, the weight of misclassified 

examples is increased, forcing the weak learner to 
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you 
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at 
least slightly better than random 
� will work if the error rate of ft(x) is less than  0.5 (0.5 is the 

error rate of a random guessing classifier for a 2-class 
problem)

� Can be applied to boost any classifier, not 
necessarily weak
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Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training 
points � d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute the error rate �t  as 
�t= �i=1…N dt(xi ) � I[yi  � ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = log ((1 – �t )/�t )

� For each xi , dt+1(xi ) = dt(xi ) � exp[αt � I(yi  � ft(xi ))]
� Normalize dt+1(xi ) so that �i=1 dt+1(xi ) = 1

� fFINAL(x) =sign [ � αt ft (x) ]

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as 
�t= � dt(xi ) � I[yi  � ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = log ((1 – �t )/�t )

� For each xi , dt+1(xi ) = dt(xi ) � exp[αt � I(yi  � ft(xi ))]
� Normalize dt+1(xi ) so that  �t+1d(xi ) = 1

� fFINAL(x) =sign [ � αt ft (x) ]

� If the classifier does not take weighted samples, this 
step can be achieved by sampling from the training 
samples according to the distribution dt(x)
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Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute �t  the error rate as 

�t= � dt(xi ) � I[yi  � ft(xi )]
� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – �t )/�t )
� For each xi , dt+1(xi ) = dt(xi ) � exp[αt � I(yi  � ft(xi ))]
� Normalize dt+1(xi ) so that  � dt+1(xi ) = 1

� fFINAL(x) =sign [ � αt ft (x) ]

� Since the weak classifier is better than random, we 
expect �t < 1/2

Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute �t the error rate as 
�t= � d(xi ) � I(yi  � ft(xi )

� assign weight αt  the classifier  ft‘s  in the final hypothesis
αt = log ((1 – �t )/�t )

� For each xi , dt+1(xi ) = dt(xi ) � exp[αt � I(yi  � ft(xi ))]
� Normalize dt+1(xi ) so that  � dt+1(xi ) = 1

� fFINAL(x) =sign [ � αtft (x) ]

� Recall that  �t < ½
� Thus (1- �t)/ �t > 1  � αt > 0
� The smaller is �t, the larger is αt, and thus the more 

importance (weight) classifier ft(x) gets in the final classifier 
fFINAL(x) =sign [ � αt ft (x) ]



8

Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute �t   the error rate as 
�t= � dt (xi ) � I(yi  � ft(xi )

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = log ((1 – �t )/�t )

� For each xi , dt+1(xi ) = dt(xi ) � exp[αt � I(yi  � ft(xi ))]
� Normalize dt+1(xi ) so that  �dt+1(xi ) = 1

� fFINAL(x) =sign [ � αt ft (x) ]

� Weight of misclassified examples is increased and the 
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost  Example 
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training 
samples

Note: in the following slides, ht(x) is used instead of ft(x), 
and D instead of d
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AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2
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AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=
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AdaBoost Comments

� It can be shown that the training error drops 
exponentially fast, if each weak classifier is slightly 
better than random

(((( ))))����−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at 
round t (weak classifier ft ) 

AdaBoost Comments
� But we are really interested in the generalization 

properties of fFINAL(x), not the training error
� AdaBoost was shown to have excellent generalization 

properties in practice, in fact in the beginning 
researchers thought it does not overfit data
� It turns out it does overfit data eventually, if you run it really 

long

� It can be shown that boosting “aggressively” 
increases the margins of training examples, as 
iterations proceed
� margins continue to increase even when training error 

reaches zero
� Helps to explain empirically observed phenomena: test error 

continues to drop even after training error reaches zero



12

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin
0.00.07.7%margins≤0.5
3.13.38.4test error
0.00.00.0training error
10001005epoch
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Boosting As Additive Model

� The final prediction in boosting g(x) can be 
expressed as an additive expansion of individual 
classifiers
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� The process is iterative and can be expressed as 
follows:

� Typically we would try to minimize a loss function
on the N training examples

fixed

Boosting As Additive Model

� Simple case:  squared-error loss
2))x(fy(

2
1))x(f,y(L −=
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� Forward stage-wise modeling amounts to 
just fitting the residuals from previous 
iteration:

� Forward stage-wise optimization seems to 
produce classifier with better generalization, 
it is not as prone to overfitting



14

Boosting As Additive Model

� It can be shown that AdaBoost uses forward 
stage-wise modeling under the following loss 
function:
� L(y, f (x)) = exp(-y � f (x))  - the exponential loss function
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Practical Advantages of AdaBoost

� fast
� simple
� Has only one parameter to tune (T)
� flexible: can be combined with any classifier 
� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses 
that are better than random guessing

� finds outliers
� The hardest examples are frequently the “outliers”
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Caveats

� performance depends on data & weak learner
� AdaBoost can fail if

� weak hypothesis too complex (overfitting)
� weak hypothesis too weak (γt→0 too quickly),

� underfitting
� Low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to noise


