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Lecture 5
Unsupervised Learning

Today

New Topic: Unsupervised Learning
= Supervised vs. unsupervised learning

= Unsupervised learning
= nonparametric unsupervised learning = clustering
= Proximity Measures
= Criterion Functions
= k-means
= parametric unsupervised learning
= Expectation Maximization (EM)




Supervised vs. Unsupervised Learning

= Up to now we considered supervised learning

scenario, where we are given
1. samples xj,..., X,
2. class label y;for all samples x;

= This is also called learning with teacher, since correct

answer (the true class) is provided

= Inthe next few lectures we consider

unsupervised learning scenario, where we are

only given
1. samples x,,..., X,

= This is also called learning without teacher, since

correct answer is not provided

= do not split data into training and test sets

Unsupervised Learning

= Data is not labeled

—— oo —

1. Parametric Approach
= assume parametric distribution of data
= estimate parameters of this distribution
= much “harder” than supervised case

= NonParametric Approach

= group the data into clusters, each cluster (hopefully)
says something about categories (classes) present in

the data
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Why Unsupervised Learning?

= Unsupervised learning is harder

= How do we know if results are meaningful? No answer
labels are available.
= Let the expert look at the results (external evaluation)
= Define an objective function on clustering (internal evaluation)

=  We nevertheless need it because

1. Labeling large datasets is very costly (speech recognition)
= sometimes can label only a few examples by hand

2. May have no idea what/how many classes there are (data
mining)

3. May want to use clustering to gain some insight into the
structure of the data before designing a classifier
= Clustering as data description

Clustering
=  Seek “natural” clusters in the data

= What is a good clustering?
= internal (within the cluster) distances should be small
= external (intra-cluster) should be large

= Clustering is a way to discover new
categories (classes)




What we Need for Clustering

1. Proximity measure, either
= similarity measure s(x;x,): large if x; x, are similar
= dissimilarity(or distance) measure d(x; x,): small if x; x, are similar
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3. Algorithm to compute clustering
= For example, by optimizing the criterion function

How Many Clusters?

......

= Possible approaches
1. fix the number of clusters to k

2. find the best clustering according to the criterion
function (number of clusters may vary)




Proximity Measures

= good proximity measure is VERY application
dependent

= Clusters should be invariant under the transformations
“natural” to the problem

= For example for object recognition, should have
invariance to rotation

distance

= For character recognition, no invariance to rotation

/ distance\
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Distance (dissimilarity) Measures

A

= Euclidean distance
d(x,,xj)=\/w K

= translation invari§=r11t 4 5
= Manhattan (city block) distance A
d
ol x,)= S0 - .J.
k=1
= approximation to Euclidean distance,
cheaper to compute T
A
= Chebyshev distance T
- (k) _ 5 (6)
d(x,.,x,.)_@&(lx," x| ®

= approximation to Euclidean distance,
cheapest to compute




Similarity Measures
= Cosine similarity:

;
X; X;
S(Xi!xj)= —
[ 1111 x; 11

= the smaller the angle, the larger the
similarity
scale invariant measure
popular in text retrieval

= Correlation coefficient
= popular in image processing

Z(x}"’ —xiJx® - x)

s(x,.,xj)= k=t

[Zd:(x,(k) —x,-)zg(xs_k) _Xi)2]1/z

k=1

N
— =
E —————=—=
| — &
[ C | .
[ | =

Feature Scale

= old problem: how to choose appropriate relative
scale for features?
= [length (in meters or cms?), weight(in in grams or kgs?)]
= In supervised learning, can normalize to zero mean unit
variance with no problems

= in clustering this is more problematic, if variance in
data is due to cluster presence, then normalizing
features is not a good thing
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Criterion Functions for Clustering

= Have samples xj,...,X,

..........
------------

= There are approximately ¢"/c! distinct partitions

= Can define a criterion function J(Dj,...,D,) which
measures the quality of a partitioning D;,...,D,

= Then the clustering problem is a well defined
problem

= the optimal clustering is the partition which optimizes the
criterion function

Iterative Optimization Algorithms

= Now have both proximity measure and criterion
function, need algorithm to find the optimal clustering

= Exhaustive search is impossible, since there are
approximately ¢"/e! possible partitions
= Usually some iterative algorithm is used

1. Find a reasonable initial partition

2. Repeat: move samples from one group to another s.t. the
objective function J is improved
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K-means Clustering

= |terative clustering algorithm
= Want to optimize the Jggg Objective function

k

Jsse = z Z” x—p; |

i=1 xeD;

= for a different objective function, we need a different
optimization algorithm, of course

= Fix number of clusters to k (¢ = k)

= Kk-means is probably the most famous clustering
algorithm

= it has a smart way of moving from current partitioning to
the next one

K-means Clustering k=3
- p——— o
1. Initialize A ® Q“
= pick k cluster centers arbitrary Q.,. ............ I
= assign each example to closest o % ‘o9 |
center ‘ : ;

2. compute sample
means for each cluster

3. reassign all samples to the
closest mean

4. if clusters changed at step 3, go to step 2




K-means Clustering
= Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

3. reassign all samples to the closest mean

If we represent clusters
by their old means, the
error has gotten smaller

=

/ |

K-means Clustering

3. reassign all samples to the closest mean

. - If we represent clusters
by their old means, the
error has gotten smaller

=

J/ |

= However we represent clusters by their new
means, and mean is always the smallest
representation of a cluster
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K-means Clustering

We just proved that by doing steps 2 and 3, the
objective function goes down

= in two step, we found a “smart “ move which decreases
the objective function

Thus the algorithm converges after a finite number
of iterations of steps 2and 3

However the algorithm is not guaranteed to find a
global minimum

T . e -
e e M e | e e ..
2-means gets stuck here global minimum of Jsgg

K-means Clustering

Finding the optimum of Jgggis NP-hard

In practice, k-means clustering performs usually
well

It is very efficient

lts solution can be used as a starting point for
other clustering algorithms

Still 100’s of papers on variants and improvements
of k-means clustering every year
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Parametric Unsupervised Learning

Expectation Maximization (EM)

= one of the most useful statistical methods
= oldest version in 1958 (Hartley)

= seminal paper in 1977 (Dempster et al.)

= can also be used when some samples are
missing features

Parametric Unsupervised Learning

Assume the data was generated by a model with
known shape but unknown parameters

P(x/6) :{>0'.. ®e ®

Advantages of having a model

= Gives a meaningful way to cluster data

= adjust the parameters of the model to maximize the probability
that the model produced the observed data

= (Can sensibly measure if a clustering is good
= compute the likelihood of data induced by clustering
= Can compare 2 clustering algorithms
= which one gives the higher likelihood of the observed data?

11



Parametric Supervised Learning

Let us recall supervised parametric learning
= have mclasses

= have samples x;,..., X, eachofclass 1, 2,..., m
= suppose D; holds samples from class i

= probability distribution for class i is p/{x|6)

ol
0% N
® ]

o =
P(x16;) P2(x|6,)

Parametric Supervised Learning

Use the ML method to estimate parameters 6,
= find 6, which maximizes the likelihood function F(6))

p(D; [6;)= Hp(xlei)=F(0i)

xeD;
= or, equivalently, find 8, which maximizes the log
likelihood /(6)

I(ei)=|np(Di 16,)= Zlnp(xle,.)

xeD;

PY I..

@ ]
A ® '
6,=argmaxinp(D;6)] 6, =argmaxlinp(D, |,)
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Parametric Supervised Learning

= now the distributions are fully specified
= can classify unknown sample using MAP classifier

Parametric Unsupervised Learning

= |n unsupervised learning, no one tells us the true
classes for samples. We still know
= have mclasses
= have samples Xxy,..., X,, each of unknown class
= probability distribution for class i is p/{x|6)
= (Can we determine the classes and parameters
simultaneously?

13



Example: MRI Brain Segmentation

| segmentatio> i

Picture from M. Leventon

= In MRI brain image, different brain tissues have different
intensities

= Know that brain has 6 major types of tissues

= Each type of tissue can be modeled by a Gaussian N(;, 6
reasonably well, parameters u;, 07 are unknown

=  Segmenting (classifying) the brain image into different
tissue classes is very useful

= don’t know which image pixel corresponds to which tissue (class)
= don’t know parameters for each N(u;, o)

Mixture Density Model

* Model data with mixture density
component densities

pix16)=3 plxIc,6,)P(c,)
= mixing parameters
= where 6=16,,...,6,}
= P(c,)+P(c,)+...+ P(c,)=1
= To generate a sample from distribution p(x|8)

= first select class j with probability P(c;)
= then generate x according to probability law p(x|c;,6})

o
Q
p(x|c,,6;) p(xics,65)
p(xic,,6,)
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Example: Gaussian Mixture Density

Mixture of 3 Gaussians 10

-5t

ps(x)= N([?,—?] ,[g gD 10

oY)
pz(x)sN([Gﬁ],[g ZD I p1(X).-..

p(x)=0.2p,(x)+0.3p,(x)+0.5p,(x)

Mixture Density

px16)=3 plxIc,0)Plc))

= P(cy),..., P(c,;) can be known or unknown
=  Suppose we know how to estimate 6,,..., 6, and

P(c,),..., P(cp,)

= Can “break apart” mixture p(x|8) for classification
= To classify sample x, use MAP estimation, that is

choose class i which maximizes

P(c; | x,6;) p(X/ciiai)P(ci)

J

Y Y
probability of component i  probability of

to generate x

component i
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ML Estimation for Mixture Density

m

px16.0)= Y plx1¢,,6,)Plc;) =¥ 1e,6))p,
j=1 =
= (Can use Maximum Likelihood estimation for a
mixture density; need to estimate

= p1=P(cy),..., pm=P(Cp), and p={p;,..., P}
= As in the supervised case, form the logarithm
likelihood function

16,p)=Inp(D|6,p)= Zi:'n p(x, 16,p) = i'“[il’(x | cf’aj)/’,-]

k=1 j=1

ML Estimation for Mixture Density

16, p)= gln[g P(X | cj’ej)pij|

= need to maximize /(8 p) with respect to 8 and p
= As you may have guessed, /(6, p) is not the easiest
function to maximize

= |f we take partial derivatives with respect to 6, p and
set them to 0, typically we have a “coupled” nonlinear
system of equation

= usually closed form solution cannot be found

=  We could use the gradient ascent method

= in general, it is not the greatest method to use, should
only be used as last resort

= There is a better algorithm, called EM

16



Mixture Density

= Before EM, let’s look at the mixture density again
p(x | 3=P) = Zp(x | C,-se,-),D,-
j=1

= Suppose we know how to estimate 6,,..., 6,, and
P1>--Pm
= Estimating the class of x is easy with MAP, maximize
p(x| ciaei)P(ci)= p(x|c;,6,)p;
= Suppose we know the class of samples xj,..., X,

= This is just the supervised learning case, so estimating
6,..., 6, and p;,....p, iseasy

6, =argmax[in p(D, | 6,)] P, = 1D, |
6

3

= This is an example of chicken-and-egg problem

= ME algorithm approaches this problem by adding
“hidden” variables

Expectation Maximization Algorithm

= EMis an algorithm for ML parameter estimation
when the data has missing values. It is used when
1. data is incomplete (has missing values)
= some features are missing for some samples due
to data corruption, partial survey responces, etc.
= This scenario is very useful, covered in section 3.9
2. Suppose data Xis complete, but p(X|8) is hard to
optimize. Suppose further that introducing certain
hidden variables U whose values are missing, and
suppose it is easier to optimize the “complete”
likelihood function p(X,U|6). Then EM is useful.
= This scenario is useful for the mixture density
estimation, and is subject of our lecture today
= Notice that after we introduce artificial (hidden)
variables U with missing values, case 2 is completely
equivalent to case 1

17



EM: Hidden Variables for Mixture Density

pix16)=> plx|c;6,)p,
j=1
= For simplicity, assume component densities are

p(x | Ci,ai)= a\;ﬂ eXp(_ (X;:;)z]

= assume for now that the variance is known
= need to estimate 8= {y,,..., Uy}

AN

= |f we knew which sample came from which
component (that is the class label), the ML
parameter estimation is easy

= Thus to get an easier problem, introduce hidden
variables which indicate which component each
sample belongs to

EM: Hidden Variables for Mixture Density

= For 1<i<n, 1<k <m, define hidden variables z{¥

) _

i =]

0 otherwise

X, > {x,,z§‘),...,z,§m)}

= z{® are indicator random variables, they indicate
which Gaussian component generated sample Xx;

= Let z;={z{1),..., zfm}, indicator r.v. corresponding to

sample Xx;
= Conditioned on z;, distribution of x;is Gaussian
p(xi |Zi!0)~ N k,o_z)

= where kiss.t. zK=1

{1 if sample i was generated by component k

18



EM: Joint Likelihood

= Letz;={z{",..., z{™}, and Z={z,,..., z,}}
= The complete likelihood is ]
p(X,Zl 0) = p(xﬂ'"! X252, | 0) = Hp(xiazi | 0)

=I_nI p(x; |z,60) p(z,)
= —

gaussian part of p,

= |f we actually observed Z, the log likelihood
In[p(X,Z] 6)] would be trivial to maximize with respect
to @and p;

= The problem, is, of course, is that the values of Z
are missing, since we made it up (thatis Zis
hidden)

EM Derivation

= Instead of maximizing In[p(X,Z]8)] the idea behind
EM s to maximize some function of In[p(X,Z]6)],
usually its expected value

E,[Inp(X,Z|06)]

= |f @makes In[p(X,Z]0)] large, then @ tends to make
ElInp(X,210)] large

= the expectation is with respect to the missing data Z

= that is with respect to density p(Z|X,6)

= however @ is our ultimate goal, we don’t know 8!

19



EM Algorithm

= EM solution is to iterate

1. start with initial parameters 6(©
iterate the following 2 step until convergence

E. compute the expectation of log likelihood
with respect to current estimate 8% and X.
Let’s call it Q(8|60)

Qlo169)=E,[Inp(x,z|6)| x,6"]
M. maximize Q(8|6")

6" = argmax 0(9 | 9(”)
7}

EM Algorithm: Picture

Inp(X|6)

v

@
optimal value for 8 6
wed like to find it but
optimizing p(X |6) is
very difficult

20



EM Algorithm: Picture

Inp(X,Z|6)

A

unobserved Z
corresponding
to observed

data X )

This curve
Corresponds to the
correct Z, we should
optimize for but Z is
not observed

6

\

for mixture estimation,
there are m" curves, each
curve corresponds to a
particular assignment of
samples to classes

EM Algorithm: Picture

Inp(X,Z|6)

ip(x,m 6)| X,6"]

0
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EM Algorithm

= |t can be proven that EM algorithm converges to the
local maximum of the log-likelihood

Inp(X | 6)

= Why is it better than gradient ascent?
= Convergence of EM is usually significantly faster, in the
beginning, very large steps are made (that is likelihood
function increases rapidly), as opposed to gradient
ascent which usually takes tiny steps
= gradient descent is not guaranteed to converge

= recall all the difficulties of choosing the appropriate
learning rate

EM for Mixture of Gaussians: E step

= Let's come back to our example p(xle)=ip(XIc,,0,)pj
P(XIC,-,G,-)= 1 (_ (X—ﬂi)zj

ooz P 20
= needto estimate 6= {y,,..., 4} and py,..., P,

= for1<i<n,1<k<m , define z®
(k) _

1 if sample i was generated by component k
Z7"=10 otherwise

= as before, z;={z{V,..., z{™}, and Z={z,,..., z,}

= We need log-likelihood of observed X and hidden Z
Inp(X,Z16)=In[] plx,,2 16) = X Inp(x, 1 2,6)P(z)

22



EM for Mixture of Gaussians: E step

= We need log-likelihood of observed X and hidden Z
Inp(X,Zlﬁ):Ianp(x,.,z,. |6) =Z|nP(X,- |2,,6)P(z;)

= First let’s rewrite p(x,|z,6)P(z,)

plx, 12" =1,0)P(z"=1) if 2" =1
p(Xi |Zi50)P(Zi)_ : :

plx, 127 =1, 6)P(™ = 1) if 27 =1
= [Tlplo 12 =1, o)p(et ="

= fl LJE exp (— (X"z_o'_t:")sz(sz) = 1)}

240

EM for Mixture of Gaussians: E step

= |og-likelihood of observed X and hidden Zis
Inp(X,216)= 3 Inp(x, 1 2,6)P(z)

5 1 (X--ﬂk)2 (k)
=) In exp| -————“— |P\z;") =1
= :[:]1:|:0' 2 p( 20° ( ' )

- _z":iln[a 12” exp (- ("fz‘a";‘)z)P(z,!“ - 1)]

2{K

2{K)

o2 202

=ﬁ:zm:z§k)[|n 1 -(Xf‘”k)2+|np(z,€k)=1)]

P(sample x; from class k )= P(c, )= p,

n m _ 2
=zzzlgk)|:ln 1 _(Xi ) +|npki|
i=1

o227 20?2
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EM for Mixture of Gaussians: E step

= |og-likelihood of observed X and hidden Zis
Inp(X,Z|6)= Z";izk[ p—r (""Z'a‘jk)z +|npk]

i=1 k=1

= For the E step, we must compute

ale16°)=Qlo1 1 ses i), p1,.... %) = E|Inp(X,Z16)] X,6"]

n o 1 (x-p)
=EZ(ZZZ§")[In 275_( ’zo'fﬁ") +Inp,((‘)D

ﬂ EX[Za,x, +b]=zi:a,.Ex[x,.]+b

sgeln 0ot )

2z 25°

EM for Mixture of Gaussians: E step

0(e|o"’)=iiEz[z§“’](lnajE— b= sn] +Inka

i=1 k=1 20°
= need to compute E;[z{¥] in the above expression
E,|z¥]=0*P(z% =0|6Y,x,)+1* P(z¥) =1] 8%, x,)

bl 0, = (a1 )
: P(xi | ‘9('))

1
pi"exp(— (x, = g ) pi"exp( 2 (= ) )

=Pz =116, x

el 100,40 = p(a =110%) 3 pfonp(~ L (-l

=1

-

= we are finally done with the E step

= for |mFIementat|on just need to compute Ejz{¥]’s don’t
need to compute Q
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EM for Mixture of Gaussians: M step

0)_ % K 1 (Xi_.uk)2
alo10)-3:5 e in_ - s in

= Need to maximize Q with respect to all parameters
= First differentiate with respect to g

9 ®)_ N wlXi—m)
aﬂko(elet)_ ;EZ[ZI] o’ =

= new y, = (”‘)—lnE[(")]
My =My _HZ zIZi " 1X;

!

the mean for class k is weighted average of all samples,
and this weight is proportional to the current estimate of
probability that the sample belongs to class k

EM for Mixture of Gaussians: M step

Q(0|0(t)) iiEz[z(k)](ln 1” (x, - +|npk)

2
i=1 k=1 20

= For p, we have to use Lagrange multipliers to preserve
constraint Z p, =1

= Thus we need to differentiate F(4,p)=Q(9] 0“’)—,{i P, —1]
=

82 F(4,p)= zp E,[z¥]-1=0 :>ZE [20]-4p, =0

i=1 Pk

= Summing up over all components: 3.3 E,[z¥]= Zﬂpk

k=1 i=1

- Since 33 E,[z%]=n and Zpk_1 we get A=n

k=1 i=1
(t+1) z E [z(k)]

25



EM Algorithm

The algorithm on this slide applies ONLY to univariate gaussian
case with known variances

1. Randomly initialize yy,..., 4y, P1s--- Pm (With
constraint Zp;= 1)

iterate until no change in u&,,..., Uy, P1s---» Pm

E. for all i, k, compute
exp(—z,;z(xf — My )2)

EZ z:(k)]= m ‘

P exp(—zlz(x,- —u,-)z)

j=1

M. for all k, do parameter update

n 1 n
My =%;EZ[ZI§k)]Xi Pk =;;Ez[zl(k)]

EM Algorithm

= For the more general case of multivariate
Gaussians with unknown means and variances

= E step: Ez[zlf")]:w
Zplp(x/ﬂ,,l'l)
j=1

where p(x |, Z,) exp[—%(x—m)’z;’(x—ﬂk)}

_ 1
(2”)d/2 2,:1

= M step:

1
pk =_ZEZ[Z§k)] n
n;35 ZEZ[Z}k)](Xi _Iuk)(xi _,uk)r

n Yo, = n
ZEZ[Z}")]X,. ‘ ZEz[z:(k)]
i= p

b=——fp—
CYE[]
=1

i
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EM Algorithm and K-means

= k-means can be derived from EM algorithm
= Setting mixing parameters equal for all classes,

1 1
P exp(_zo_z(x:‘_ﬂk)z) exp(_zo_z(xi_ﬂk)z)

Ez[z§k)1= m ‘

ZP;eXP(-zlz(x,-—ﬂ,-)z) ) gexp(—zlz(x,-—ﬂ,)zj

(=

= |[fwelet o — =, then

1 itV X = 1> X — 1]
(k) = J i~ My i lu]
E,[2"] {0 otherwise

= g0 at the E step, for each current mean, we find all
points closest to it and form new clusters

= atthe M step, we compute the new means inside
current clusters 1¢
My = ;ZEZ[Z,('{)]X,-
i=1

EM Gaussian Mixture Example
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EM Gaussian Mixture Example

After first iteration

EM Gaussian Mixture Example

After second iteration
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EM Gaussian Mixture Example

After third iteration

EM Gaussian Mixture Example

After 20th iteration
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EM Example

= Example from R. Gutierrez-Osuna
= Training set of 900 examples forming an annulus

=  Mixture model with m = 30 Gaussian components of
unknown mean and variance is used
= Training:
= [nitialization:
= means to 30 random examples
= covaraince matrices initialized to be diagonal, with
large variances on the diagonal (compared to the
training data variance)
= During EM training, components with small mixing
coefficients were trimmed
= This is a trick to get in a more compact model, with
fewer than 30 Gaussian components

EM Example

Iteration O Iteration 25 Iteration 50

Iteration 275 Iteration 300

LN

R 7
,F,u |

soyepgTo L

from R. Gutierrez-Osuna
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EM Texture Segmentation Example

[

Figure from “Color and Texture Based Image Segmentation Using EM and Its
Application to Content Based Image Retrieval”,S.J. Belongie et al., ICCV 1998

EM Motion Segmentation Example

Three frames from the MPEG “flower garden” sequence

. pt s S S R

4 4 4 4 & & & =

Figure from “Representing Images with layers,”, by J. Wang and E.H.
Adelson, IEEE Transactions on Image Processing, 1994, ¢ 1994, IEEE
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EM Algorithm Summary

= Advantages
= |f the assumed data distribution is correct, the
algorithm works well
= Disadvantages

= |f assumed data distribution is wrong, results
can be quite bad.

= |n particular, bad results if use incorrect number of
classes (i.e. the number of mixture components)
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