
1

CS840a 
Learning and Computer Vision 

Prof. Olga Veksler

Lecture 6
Markov Random Fields and 

Belief Propagation

Today

� Markov Random Fields
� Belief Propagation
� Next time paper:

� “Object Class Recognition by Unsupervised 
Scale-Invariant Learning” by R. Fergus, P. 
Perona, A. Zisserman
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Labeling Problem
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A priori knowledge is frequently available

� Bayesian framework is suitable:                 
assign prior probabilities Pr(f) to labelings

Unlikely answer Better answer
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Pixel’s label depends on neighboring pixels
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Desirable Properties of prior Pr(f)
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qp pq NN ∈⇔∈Property:

Each pixel p has  a neighborhood                      pN

Markov Random Fields (MRF)

}{ r,l,b,tp =N
}{ z,xq =N

Examples:

� F is an MRF if: 
� Markovianity:

� Positivity:

}{( ) ( )
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Markov Random Fields
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� Not obvious how to compute 
from local conditional distributions                    

� Hammersley-Clifford theorem:  f is an 
MRF if and only if it has Gibbs 
distribution
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Markov Random Fields

� A  clique c is a set of pixels

�

� Clique potentials specify an 
MRF
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C is the set of all cliques

is a  clique potentialRL:)f(V m
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� Only two-cliques are non-zero 
� Two-clique potential            :   
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MRF Example

encourages piecewise-constant f

MAP-MRF estimation
� Given: observed data d, prior  Pr( f )

and likelihood function 

� Maximize Posterior Probability (MAP)

� By Bayes’ law,                                     

� MAP estimate:
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� Likelihood function:

� Maximization problem: 

� Equivalent to posterior energy
minimization:
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data for 
pixel p

MAP-MRF estimation

Comments:

� MAP-MRF approach for computer vision 
was first advocated by Geman and Geman, 
1984

� High optimization cost.  Standard methods, 
like simulated annealing, work very slow 
because typical image size is formidable
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Comments:

� MAP-MRF approach for computer vision 
was first advocated by Geman and Geman, 
1984

� Computation is only tractable in some 
special cases

� In general, high optimization cost.  Standard 
methods, like simulated annealing, work 
very slow because typical image size is 
formidable

Belief Propagation (BP)

� Advocated by Pearl for tree-structured graphs in 
the context of Bayesian Nets

� Gives exact estimates in a tree graph
� Can be applied to general graphs, however

� No optimality guarantee
� May not converge

� There are  2 versions of BP
� max-product, best to use if MAP estimate is needed 

� Map estimate is maxfPr(f |d) 

� sum-product, best to use if marginals at each node are 
needed
� Marginal at node p is Pr(fp|d)
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Max-product BP

� After “convergence” the final label at each pixel p
is computed as:
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� Iterate until convergence:
� Each pixel p (or node) sends a message vector (in 

parallel) to each of its neighobrs q, 

where
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Sum-product BP

� After “convergence” compute the belief for each 
label l at each pixel p:
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� Iterate until convergence:
� Each pixel p (or node) sends a message vector (in 

parallel)  to each of its neighobrs q, 

where
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BP

� For tree-structured graph, it can be shown that 
� max-product BP gives the MAP estimate of the MRF, 

that is maxfPr(f |d) 
� sum-product BP gives the correct posterior marginals 

that is Pr(fp|d) =b(p)
� Start passing messages at the leafs moving up to the roof
� Compute the solution label (for max-product) or the belief 

vector (for sum-product) from the root down to the leafs

References for BP

� Several interesting speed-up techniques for max-
product BP (and code) available from
� “Efficient Belief Propagation for Early Vision”, P.F. 

Felzenszwalb and D.Huttenlocher, CVPR2004
� “On the optimality of solutions of the max-product belief 

propagation algorithm in arbitrary graphs”, Y. Weiss and 
W.Freeman, IEEE Transactions on Information Theory, 
2001

� “Generalized Belief Propagation”, J.S. Yedidia , W.T. 
Freeman, Y.Weiss to appear in NIPS 2000
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Comments about BP on General Graphs

� Pros
� Can be applied to any energy function and any 

neighborhood structure
� Very easy to implement

� Cons
� Not guaranteed to converge on (does go into infinite 

loops occasionally)
� No optimality guarantees even if converges
� Not very fast

Better Message Passing Algorithms

� Tree-reweighed message passing algorithms
� “MAP estimation via agreement on hyper trees: 

Message-passing and linear-programming 
approaches”, by Wainwright, Jaakkola, Willsky, 
in IEEE trans. On  Infor. Theory, 2005

� “Convergent tree-reweighted message passing 
for energy minimization”, V. Kolmogorov, in 
International workshop on Artificial Intelligence 
and Statistics, 2005.


