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Markov Random Fields and
Belief Propagation

Today

= Markov Random Fields
= Belief Propagation
= Next time paper:

= “Object Class Recognition by Unsupervised
Scale-Invariant Learning” by R. Fergus, P.
Perona, A. Zisserman




Labeling Problem
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A priori knowledge is frequently available

Unlikely answer Better answer
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= Bayesian framework is suitable:
assign prior probabilities Pr(f) to labelings
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Desirable Properties of prior Pr(f)

Pixel’s label depends on neighboring pixels
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Markov Random Fields (MRF)

Each pixel p has a neighborhood N ,
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Markov Random Fields

= F is an MRF if:
= Markovianity:

P”(f,;‘fs-{p}) = Pr(fp pr)

= Positivity:
Pr(f) >0, vfelL"




Markov Random Fields

= Not obvious how to compute Pr(f)
from local conditional distributions Pr(ff, )

= Hammersley-Clifford theorem: f is an
MRF if and only if it has Gibbs
distribution
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= A clique cis a set of pixels
c ={p1 ..... pk| p,'s are neighbors of each other}

C is the set of all cliques

" V(f):L" >R 1sa clique potential

= Clique potentials V.(f) specify an
MRF




MRF Example

= Only two-cliques are non-zero
= Two-clique potential {p,q}

qu( fp’fq) = Uy 5( fp i fq)
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MAP-MRF estimation

= Given: observed data d, prior Pr(f)
and likelihood function Pr(d|f)

= Maximize Posterior Probability (MAP)
Pr( f|d ) overall feL"

= By Bayes’ law, Pr( f|d )e< Pr(d|f )Pr( f )

= MAP estimate:
f = arg max Pr( d‘f)Pr(f)

felL"




MAP-MRF estimation

_ ] i data for
= Likelihood function: pixel p

Pr(d|f)=T] b, (a,t,)
= Maximization problgm:

arg max exp(Z/n Dp(dp‘fp) - Uy, S(f, # fq)J
p {p.q}
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= Equivalent to posterior energy
minimization:

f: arg min ( Zupq 5(fp i fq)_zlnDP(dP‘fP)J
{ P

f p.gEeN

Comments:

MAP-MRF approach for computer vision
was first advocated by Geman and Geman,
1984

= High optimization cost. Standard methods,
like simulated annealing, work very slow
because typical image size is formidable




Comments:

= MAP-MRF approach for computer vision
was first advocated by Geman and Geman,
1984

= Computation is only tractable in some
special cases

= In general, high optimization cost. Standard
methods, like simulated annealing, work
very slow because typical image size is
formidable

Belief Propagation (BP)

= Advocated by Pearl for tree-structured graphs in
the context of Bayesian Nets

= Gives exact estimates in a tree graph

= Can be applied to general graphs, however
= No optimality guarantee
= May not converge

= There are 2 versions of BP
= max-product, best to use if MAP estimate is needed
= Map estimate is max,Pr(f|d)
= sum-product, best to use if marginals at each node are
needed
= Marginal at node p is Pr(f,|d)




Max-product BP

= |terate until convergence:

= Each pixel p (or node) sends a message vector (in
parallel) to each of its neighobrs q,

[mp%q ) omo (L) mp%q(lk)]
where
m, ()= min,,|:Dp(l')+ V., (1,1+ Zm,ﬁp(/')}

= After “convergence” the final label at each pixel p

is computed as:
arg m/n,|: + > m,_( }
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Sum-product BP

= |terate until convergence:

= Each pixel p (or node) sends a message vector (in
parallel) to each of its neighobrs q,

[mpﬁq 1) m, () .. mpﬁq(/k)]
where
m,_. ()= Z D,(I'V,,,(I',1) H > m,_ (I

= After “convergence” compute the belief for each
label / at each pixel p:

=D0,(N] [mq-p 1)
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BP

For tree-structured graph, it can be shown that

= max-product BP gives the MAP estimate of the MRF,
that is maxPr(f|d)

= sum-product BP gives the correct posterior marginals
that is Pr(f,|d) =b(p)

Start passing messages at the leafs moving up to the roof

Compute the solution label (for max-product) or the belief
vector (for sum-product) from the root down to the leafs

References for BP

Several interesting speed-up techniques for max-
product BP (and code) available from

= “Efficient Belief Propagation for Early Vision”, P.F.
Felzenszwalb and D.Huttenlocher, CVPR2004

“On the optimality of solutions of the max-product belief
propagation algorithm in arbitrary graphs”, Y. Weiss and
W.Freeman, IEEE Transactions on Information Theory,
2001

“Generalized Belief Propagation”, J.S. Yedidia , W.T.
Freeman, Y.Weiss to appear in NIPS 2000
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Comments about BP on General Graphs

= Pros

= Can be applied to any energy function and any
neighborhood structure

= Very easy to implement
= Cons
= Not guaranteed to converge on (does go into infinite
loops occasionally)
= No optimality guarantees even if converges

= Not very fast

Better Message Passing Algorithms

= Tree-reweighed message passing algorithms

= “MAP estimation via agreement on hyper trees:

Message-passing and linear-programming
approaches”, by Wainwright, Jaakkola, Willsky,
in IEEE trans. On Infor. Theory, 2005

= “Convergent tree-reweighted message passing
for energy minimization”, V. Kolmogorov, in
International workshop on Artificial Intelligence
and Statistics, 2005.
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