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Abstract

Inpainting is the problem of filling-in holes in images.
Considerable progress has been made by techniques that
use the immediate boundary of the hole and some prior
information on images to solve this problem. These algo-
rithms successfully solve the local inpainting problem but
they must, by definition, give the same completion to any
two holes that have the same boundary, even when the rest
of the image is vastly different.

In this paper we address a different, more global inpaint-
ing problem. How can we use the rest of the image in order
to learn how to inpaint? We approach this problem from the
context of statistical learning. Given a training image we
build an exponential family distribution over images that is
based on the histograms of local features. We then use this
image specific distribution to inpaint the hole by finding the
most probable image given the boundary and the distribu-
tion. The optimization is done using loopy belief propaga-
tion. We show that our method can successfully complete
holes while taking into account the specific image statistics.
In particular it can give vastly different completions even
when the local neighborhoods are identical.

1. Introduction
Inpainting, dis-occlusion and filling-in are various names

for the same task: Given an image with a missing region
(a hole), restore the values in the hole in an undetectable
way [3]. Applications include restoration of old images,
removal of overlaid text and logos and removal of objects
from images.

The inpainting problem is clearly ill-posed. Any method
must therefore use some prior assumptions about the un-
known missing values and their relations with the known
hole neighborhood. Most existing approaches (see e.g. [17]
for a review) use a generic prior on images (e.g. high
smoothness, low total variation or low curvature) and use
an optimization to find the most probable completion given
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Figure 1. a.-b. Two images with holes. In both cases
the boundary of the holes are identical thus local inpainting
algorithms would complete them identically. c.-d. The re-
sults of the algorithm in [3] run with a single resolution. As
can be expected from a local algorithm, the completion is
identical. In this paper we ask: how can we use the global
information in the image to cause the completions to be dif-
ferent?

the prior model and the immediate boundary of the hole.
We call these approaches local inpainting algorithms.

Despite the impressive successes of local approaches,
they must by definition give identical completions when
the immediate boundary of the hole is identical. Consider
Fig. 1-a,b: two images of a square and a circle, each with
a missing square region on the bottom-right part. While
the circle and square are different, the small neighborhoods
around the holes are identical. Indeed, up to numerical er-
ror, the gradients and gray levels in the immediate boundary
of the hole, are identical. Thus any algorithm that is based
on a generic model and these boundary conditions will re-
store the two holes identically. Figs 1-c,d show the results



Figure 2. Two Pablo Picasso paintings with holes. The
vicinity of the hole is nearly identical in the two paintings
but the global style is vastly different. We would like the
completion to be different.

of the local algorithm in [3]1. While the completions are
very reasonable given the local information, they do not ap-
pear “perceptually correct”. Evidently our visual system is
taking more global information into account.

The global statistics are similarly important in painting
restoration, we would want to restore a hole in a Mondrian
painting very differently from a locally identical hole in a
Bruegel painting (indeed even a Picasso from the blue pe-
riod should be restored completely differently from a Pi-
casso in the cubist period). Figure 2 shows an example.
The immediate vicinity of the two holes are very similar but
the global statistics are very different: the cubist painting
has a different “look” compared to the Blue period painting
and we want inpainting algorithms to preserve this look. We
call this problem “learning how to inpaint”.

In this paper we address this problem in the context of
statistical learning. We use the input image to learn a prob-
ability distribution over images that is in the exponential
family. We then use loopy belief propagation to find the
most probable completion of the hole under this learned dis-
tribution.

1.1 Previous work

In most existing inpainting approaches the hole is esti-
mated as the most “smooth” continuation of the local struc-
ture of the image, where smoothness can be defined in dif-
ferent ways. This main advantage of this approach is that
when properly formulated it can be applied to an arbitrary
image patch with minimal user interaction. A smooth con-
tinuation can be defined in various ways. Bertalmio et. al.
[3], inspired by professional art restorators , propagate gra-

1We thank Joan Verdera for providing these results. The results are
with a single resolution. Multi resolution results may be different for the
two figures

dient direction and gray values from the surrounding neigh-
borhood into the hole. They formulate the process elegantly
in a PDE framework, and solve it using fast iterative solvers.

In a later paper [1], they use similar ideas, but reformu-
late the inpainting process in a variational framework. They
propose to minimize the following cost function over the
image � and its normal field � :�������
	 �
� ������� ��� � �����������  � � � �"!#���
	 �$�%�  � ��& �#'  ��� (1)

The
� �
�(��� ��� � term penalizes curvature, the

�  � � term pe-
nalizes large gradients and the second integral is a relax-
ation of the constraint that the � is indeed the normal field
of � . As we discuss in the next section, the impressive re-
sults in [1] using only local image operators motivated us to
use only local image statistics to define our prior.

Another way to define a smooth filling-in was presented
by Chan and Shen [4], who minimized the total variation
in the result image. As mentioned in [1], such approach
handles noise very well, but tends to complete straight lines.

Filling-in of holes is also performed by texture synthe-
sis algorithms where it is assumed that the missing data is
part of a (usually homogeneous) texture. The region can be
filled-in by a texture synthesis engine, e.g. [16, 8, 22, 9, 6].
The texture-synthesis approach can process large holes, and
fill them with rich structures learned from similar regions
in the image. We found two application of texture synthe-
sis to image inpainting. Hirani and Totsuka [13] fill in a
selected texture by combining spectral and spatial informa-
tion, achieving impressive results. Criminisi et. al. used an
exampler-based approach, adapting the synthesis method of
Efros and Leung [9] to image inpainting [5]. Recent works
combine texture synthesis with inpainting of structure [2].

Filling-in of holes in simple images consisting of a sin-
gle contour has also been extensively studied in the human
vision literature [19, 21]. These approaches also rely on a
notion of smooth continuation, but in general they cannot
be applied to an arbitrary image patch in a natural image.

2 Exponential family models of image statis-
tics

In order to learn how to inpaint, we want a method that
will capture the “look” of a training image in a probability
distribution over images. The main challenge is to estimate
the parameters of such a distribution from a single image.
Obviously, if one represented image patch statistics using a
huge look up table of all possible )�*�+�)�* image patches and
their respective probabilities then learning how to inpaint
would be trivial but estimating such a table is, of course,
impossible.

Our approach is motivated by the success of exponential
family distributions in the modeling of images and natural
language [22, 7, 12, 14]. In this approach the probability of
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Figure 3. The marginal statistics of the features we are using: gradient magnitude (center) and relative gradient angle (right).
These simple, local histograms capture the different “look” of the three images. Note that the axis limits in the angle histograms are
vastly different for the square and the circle: in the circle all angular differences are between � and ��� ��� .

an image is defined by means of a small number of sufficient
statistics or features, each of which can be evaluated at an
arbitrary location in the image. The probability of an image
is given by:

� � ���	��

��� � ���������������� � � �"!$#%�"!
�
	 �	&'&

(2)

Where (�� � +*)%+ � is the value of feature
�

at location
� +*)%+ � in

the image � , and
�

is a normalization factor. The parame-
ters of an exponential family distribution are the choice of
features and the tables 
,� � ( � : intuitively the larger the aver-
age value of 
 � � ( � for a particular image, the more probable
the image is.

Learning exponential family distributions from data is a
difficult but well studied problem. Typically, one chooses
the features based on a notion of informativeness and then
chooses the tables based on the maximum likelihood or
maximum entropy criterion [22, 7]. For exponential fam-

ily distributions these criteria are identical and simplify to
a requirement that the predicted marginals of all features
match the empirical marginals in the data:� �.- � ��/ �0��
1� � �32���.- � �4/ � (3)

The computational difficulty arises from the left hand
side of equation 3: calculating the predicted marginals re-
quires summing over all possible images, and while Monte-
Carlo methods can be applied they are still too slow for our
application where the model is learned anew for every im-
age that we process.

We simplify the learning in two ways. First, the features
in the distribution are fixed for all images. Motivated by
previous work on natural image statistics [15, 18] and the
work of [1] we chose two features that we thought would
be informative: gradient magnitude

-65�� +7)8+$� � �  � � +7)8+$� �
and pairwise gradient angle. Pairwise gradient angle is de-
fined for every pair of neighboring pixels

� + 5 )%+ 5 ��) � +�9:)%+:9 � .
3



Denote the gradients � 5 �  � � + 5 )%+ 5 � , ��9 �  � � +�9:)%+�9 � .
We define the angle � 5 9 between the two gradients as � 5 9 �������� 5 � � �	� � )�
 � � � � � � 9 � � and set:- 9 � + 5 )%+ 5 ) + 9 )%+ 9 � � � 5 9 (4)

Note that this feature is measured for all pairs of neigh-
boring pixels: we do not assume that we can decide which
pairs of gradients belong to the same curve. Since the an-
gle of the gradient is noisy at gradients of low magnitude,
we only measure the angle feature at gradients above a cer-
tain threshold. Figure 3 shows the marginal histograms of
these two features on a natural image and the two synthetic
images described earlier. Note that the different histograms
capture the different “looks” of the three images. The fact
that the natural image is more textured than the synthetic
images is captured in the magnitude histogram: there are
much more nonzero gradients in the real image. The dif-
ference between the circle and the square is captured in the
relative angle histogram. In the square the distribution is bi-
modal, indicating that adjacent pixels either have identical
angle (i.e. along straight lines) or have a very different angle
(i.e. at sharp corners). In the circle, adjacent pixels always
have similar angle (i.e. there are no sharp corners). (Note
that the axis limits in the angle histograms are vastly dif-
ferent for the square and the circle: in the circle all angular
differences are between * and *�� *�
 ).

The second simplification we make is the method by
which we estimate 
 . To understand the complexity of solv-
ing equation 3 note that equation 2 with our choice of fea-
tures is equivalent to a Markov Random Field distribution
on the gradient field, � � ��� of an image � :

� � � � � �%� �3���� ��� �
� � � ���� ������� ��� � � � )�� � � (5)

where � �����
refers to pairs of neighboring pixels in

the image and � �
� ����� ���� "! � 
 5 � � ��� � �%� and � ���

� ���%)��#� � ��� "!�� 

9 � ����� � . Thus estimating 
,�$� is as difficult as estimat-
ing the potential functions in a MRF.

Since exact ML estimation of the potentials of the MRF
is intractable, a number of approximations have been pro-
posed. We used an approximation similar to the one used
in [10] where the potentials are approximated by the empir-
ical marginal and conditional probabilities. Specifically we
set:

� �
� ��� � � 2� �%� ��� � � (6)

� ���
� ���8)��#� � � 2� � ����� � (7)

It is easy to show that when the MRF is singly connected
these settings will give rise to 
 tables that exactly sat-
isfy the maximum likelihood equation (eq. 3). Thus if we
wanted to model a single scan line of an image, these pa-
rameters would be exact. In our case, of course, the graph

has many loops so these parameters are not the maximum
likelihood parameters, but this approximation has proven to
be successful in a number of vision applications [10].

The only tweakable parameter in our model is the defini-
tion of the region over which the histograms are calculated.
This can either be the entire image, a subregion of the input
image or even a different image that has a similar “look” to
the one the user wants.

To summarize: in order to fill in a hole in the image, we
first measure histograms of our features over the training
image, and then search for an integrable gradient field that
agrees with the image gradients on the boundary of the hole
and maximizes the probability defined by equations 5,6.

3 Optimization using loopy Belief Propaga-
tion

In order to find the most probable filling-in we need to
optimize the probability, conditioned on the hole boundary%

:

� � � � % � � �� 9 � �&� �
� � � � �� �$���'� �$� � � � )(� � � �� ���*)+� � �$�*)

� � � )(� � )�� ) �
(8)

where
� 9 is a normalization factor and � ���*) enforces inte-

grability of the gradient field (differentiating the x deriva-
tive with respect to y should give the same answer as dif-
ferentiating the y derivative with respect to x). The product
is taken over all gradients inside the hole and those in the
boundary, and gradients on the boundary are fixed to their
observed values.

Naive optimization of equation 8 is of course exponential
in the size of the hole. The max-product belief propagation
algorithm [20] is a local, message passing algorithm that
can be used to perform the optimization. It is guaranteed
to find the global optimum when the graph has no loops.
In our case, the graphical model defined by equation 8 has
many loops. Nevertheless motivated by the recent results
on similar graphs [10, 11] we expected good results for our
problem. When it converges, the max-product algorithm
is guaranteed to find a gradient field �	�:��� that is a local
maximum of equation 8 with respect to a large neighbor-
hood [20]. Finally, given the gradient field we integrate it
by robustly solving the following linear equation:

, + � � (9)

where + is a vectorized version of the image,
,

is the dif-
ferentiation matrix of size ).-0/1- (where - is the number
of pixels) and � is a vectorized version of the gradient field.
This is an overconstrained set of equations and we find the
solution that minimizes the 2 5 norm using linear program-
ming.

In order to run the max-product belief propagation al-
gorithm one needs to discretize the gradient field. We used
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� )�* candidate gradients chosen using a clustering algorithm
from the gradients of the input image surrounding the hole.

4 Experiments
In the previous section, we saw that the marginal statis-

tics of the square and circle are quite different. Can our
algorithm use this difference to correctly learn how to in-
paint?

The results are shown in figure 4. The training image was
the full image. To avoid aliasing artifacts we anti-aliased
both figures. Since the number of distinct gradients in the
areas surrounding the holes here are quite small, we aug-
mented the discretization with an additional set of gradients
chosen to tile the space of orientations. The same discrete
set of gradients was used for both images. Note that the
algorithm correctly adapts to the particular image and com-
pletes a circle in one case and a square in the second case,
despite the fact that the local neighborhoods are identical.
This is due to the vastly different relative angle histograms
in the two images. For the square image, the relative angle is
almost always zero, except for a few instances where the rel-
ative angle is large. For the circle image, on the other hand,
the relative angle is typically small but nonzero. The right
column shows what happens when each image is filled-in
based on marginal statistics from the other image.

Figure 5 shows the output of our algorithm on the two
Pablo Picasso paintings with different styles. For each im-
age, we used a small patch from that image to estimate
the histograms. To avoid aliasing artifacts the images are
smoothed. While the holes in the two images are not identi-
cal, they are very similar locally. Yet our algorithm com-
pletes sharp corners for the cubist painting and smooth
curves for the blue period painting.

Can we learn how to inpaint in real images ? Figure 6
shows a result. We trained the algorithm on an urban scene
and a fruit image (top row). We then used the urban scene
statistics to fill-in the holes in the ruins image and the fruit
scene statistics to fill-in the fruit image. As a result, our
algorithm completes sharp corners on the ruins but smooth
curves on the fruit. Again, note that the boundary of the
hole in the fruit image is very similar (up to rotation) to the
boundaries of the top two holes in the ruins image. Thus
classical inpainting approaches should give similar results
in the two cases.

In the previous two examples, our algorithm can success-
fully adapt to the image statistics and give completions that
depend not only on the local boundary of the hole but also
on the global “look” of the image. This is in contrast to ex-
isting inpainting approaches that give identical completions
when the boundary is identical. However, given the success
of existing approaches in many images, one wonders: will
our algorithm cause a decrease in performance in images
where the boundary information is sufficient?

Figure 7 shows that our algorithm also performs well in
the cases where classical algorithms perform well. In fact,
the completion is very similar to the one calculated by [3].
This is because the marginal statistics in this image (fig-
ure 3) favor “smooth” completions: since both the magni-
tude histogram and the angle histogram are peaked at zero,
the learned distribution favors completions with short lines
and low curvature.

5 Discussion

Inpainting is obviously an ill-posed problem and hence is
impossible without some assumption about the statistics of
images. In that sense, all previous approaches to inpainting
can also be viewed as having an implicit probabilistic model
of images: e.g. that images tend to be smooth [3] or that
images tend to contain homogeneous texture [8]. In this
work, we have asked: how can we learn this probabilistic
assumption from the input image? We have shown that a
model based on histograms of local features can capture the
“look” of an image and shown how to use these histograms
to define the filling in of a hole.

In future work we would like to extend our model to use
more image features. In particular the probability model
presented in this paper does a poor job of representing tex-
ture. It would be interesting to see whether a small number
of additional features (e.g. the ones used in [16]) would
enable our algorithm to inpaint textured regions. A promis-
ing direction to explore is to choose the features anew for
the particular image that needs to be inpainted. This would
require efficient approximations to the Minimax approach
used in [22]. An alternative way to use our method in tex-
tured images is to use the decomposition into a “structure”
image and a “texture image” proposed in [2] and apply our
current method only to the structure image.

In future work we would also like to explore other op-
timization methods. While our framework is probabilistic,
we are interested only in the most probable completion so
calculation of marginal probabilities is not necessary. We
are interested in exploring some of the powerful optimiza-
tion techniques used in local inpainting to find the most
probable completion given our model. In particular, our
current optimization algorithm is single scale and hence our
completions are not as sharp as the state of the art local
algorithms. One approach worth exploring is to initialize
the local algorithms with our completion and thus obtain a
sharper image.

The challenge of defining simple probability models that
capture the “look” of an image is common to a large num-
ber of problems in vision and image processing including
superresolution, denoising, transparency analysis and more.
We believe that progress in learning how to inpaint will di-
rectly translate into progress in these additional domains.
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Figure 4. Filling in a circle and a rectangle. The completion depends on the marginal statistics. Middle column: Each figure is
completed based on marginal statistics taken from the same image. The circle completion is curved and the square completion has
a sharp corner. Right column: Each image is completed based on marginal statistics taken from the other image.

Figure 5. The output of our algorithm on the two Pablo Picasso paintings with different styles. The algorithm completes sharp
corners for the cubist painting and smooth curves for the blue period painting.
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