
Sharing features: efficient boosting procedures for multiclass object detection

Antonio Torralba Kevin P. Murphy William T. Freeman

Computer Science and Artificial Intelligence Lab., MIT

Cambridge, MA 02139

Abstract

We consider the problem of detecting a large number of dif-

ferent object classes in cluttered scenes. Traditional ap-

proaches require applying a battery of different classifiers

to the image, which can be slow and require much train-

ing data. We present a multi-class boosting procedure

that reduces both the computational and sample complex-

ity, by finding common features that can be shared across

the classes. The detectors for each class are trained jointly,

rather than independently. For a given performance level,

the total number of features required is observed to scale

approximately logarithmically with the number of classes.

In addition, we find that the features selected by indepen-

dently trained classifiers are often specific to the class,

whereas the features selected by the jointly trained classi-

fiers are more generic features, such as lines and edges.

1. Introduction

A long-standing goal of machine vision has been to build

a system that is able to recognize many different kinds of

objects in cluttered scenes. Progress has been made on

restricted versions of this goal. In particular, it is now

possible to recognize instances of highly textured objects,

such as magazine covers or toys, despite clutter, occlu-

sion and affine transformations, by using object-specific

features [12, 19]. In addition, it is possible to recognize

many classes of objects, generalizing over intra-class varia-

tion, but only when the objects are presented against simple

backgrounds [14, 15, 10, 4, 13].

The problem of detecting classes of objects in clut-

tered images has proved more challenging. Most cur-

rent approaches slide a window across the image, and ap-

ply a binary classifier to each such window; the classifier,

which discriminates between the class or the background, is

trained using standard machine learning techniques, such as

boosting [22] or support vector machines [16]). However,

such approaches seem unlikely to scale up to the detection

of hundreds or thousands of different object classes because

each classifier is trained and run independently.

In this paper, we develop a new object classification ar-

chitecture that explicitly learns to share features across mul-

G12 G1

G123 G13 G2

G23 G3

Figure 1: All possible ways to share features amongst 3

classifiers. Each classifier H(v, c) is constructed by adding,

only once, all the nodes that connect to each of the leaves.

The leaves correspond to single classes.

tiple object classes (classifiers). The basic idea is an ex-

tension of the boosting algorithm [17, 6], which has been

shown to be useful for detecting individual object classes in

cluttered scenes [22]. Rather than training C binary classi-

fiers independently, we train them jointly. The result is that

many fewer features are needed to achieve a desired level

of performance than if we were to train the classifiers in-

dependently. This results in a faster classifier (since there

are fewer features to compute) and one which works better

(since the features are fit to larger, shared data sets).

2. Sharing features

Boosting [17, 6] provides a simple way to sequentially fit

additive models of the form

H(v, c) =

M
∑

m=1

hm(v, c),

where c is the class label, v is the input feature vector, and

M is the number of rounds. In the boosting literature, the

hm are often called weak learners. It is common to define

these to be simple decision or regression stumps of the form

hm(v) = aδ(vf > θ) + b, where vf denotes the f ’th com-

ponent (dimension) of the feature vector v, θ is a threshold,

δ is the indicator function, and a and b are regression pa-

rameters (note that b does not contribute to the final classi-

fication).

We propose to share weak-learners across classes. For

example, if we have 3 classes, we might define the follow-

ing classifiers:

H(v, 1) = G1,2,3(v) + G1,2(v) + G1,3(v) + G1(v)

1

H(v, 2) = G1,2,3(v) + G1,2(v) + G2,3(v) + G2(v)

H(v, 3) = G1,2,3(v) + G1,3(v) + G2,3(v) + G3(v)

where each GS(n)(v) is itself an additive model of the form

GS(n)(v) =
∑Mn

m=1 hn
m(v). The n refers to a node in the

“sharing graph”, which specifies which functions can be

shared between classifiers (Fig.1). S(n) is the subset of

classes that share the node n.

The decomposition is not unique (different choices of

functions GS(n)(v) give the same functions H(v, c)). But

we are interested in the choices of GS(n)(v) that mini-

mize the computational cost. We impose the constraint that
∑

n Mn = M , where M is the total number of functions

that have to be learned. If the classifiers are trained inde-

pendently, we find we need O(C) functions, whereas if the

classifiers are trained jointly, the required number of fea-

tures grows sub-linearly with the number of classes.

To gain some intuition as to why sharing might help,

suppose we have C classes, and, for each class, the fea-

ture vectors reside within some sphere in a D-dimensional

space. Further, suppose the weak classifiers are hyper-

planes in the D-dimensional space. If the classes are ar-

ranged into a regular grid, then, by sharing features, we

need M = 2DC1/D hyperplanes to approximate the hy-

perspherical decision boundary with hypercubes.

2.1. The joint Boosting algorithm

The idea of the algorithm is that at each boosting round,

we examine various subsets of classes, S ⊆ C, and con-

sider fitting a weak classifier to distinguish that subset from

the background. We pick the subset that maximally reduces

the error on the weighted training set for all the classes. The

best weak learner h(v, c) is then added to the strong learners

H(v, c) for all the classes c ∈ S, and their weight distribu-

tions are updated so as to optimize the following multiclass

cost function:

J =

C
∑

c=1

E
[

e−zcH(v,c)
]

(1)

where zc is the membership label (±1) for class c. The

term zc × H(v, c) is called the “margin”, and is related to

the generalization error (out-of-sample error rate).

We chose to base our algorithm on the version of boost-

ing called “gentleboost” [7], because it is simple to im-

plement, numerically robust, and has been shown experi-

mentally [11] to outperform other boosting variants for the

face detection task. The optimization of J is done us-

ing adaptive Newton steps [7] which corresponds to min-

imizing a weighted squared error at each step. Specifi-

cally, at step m, the function H is updated as: H(v, c) :=
H(v, c) + hm(v, c), where hm is chosen so as to minimize

a second order Taylor approximation of the cost function.

1. Initialize the weights wc
i = 1 and set H(vi, c) = 0, i =

1..N , c = 1..C.

2. Repeat for m = 1, 2, . . . , M

(a) Repeat for n = 1, 2, . . . , 2C
− 1

i. Fit shared stump:

hm(v, c) =

{

aδ(vf
i > θ) + b if c ∈ S(n)

kc if c /∈ S(n)

ii. Evaluate error

Jwse(n) =

C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hm(vi, c))

2

3. Find best sharing by selecting n = arg minn Jwse(n), and

pick the corresponding shared feature hm(v, c).

4. Update

H(vi, c) := H(vi, c) + hm(vi, c)

wc
i := wc

i e
−zc

i
hm(vi,c)

Figure 2: Joint Boosting with regression stumps. vf
i is the

f ’th feature of the i’th training example, zc
i ∈ {−1, +1} are

the labels for class c, and wc
i are the unnormalized example

weights. N is the number of training examples, and M is

the number of rounds of boosting.

Replacing the expectation in Equation 1 with an empiri-

cal expectation over the training data, and defining weights

wc
i = e−zc

i
H(vi,c) for example i and class c, results in min-

imizing the weighted squared error:

Jwse =

C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hm(vi, c))

2. (2)

The resulting optimal function at round m is given by

hm(v, c) =

{

aδ(vf
i > θ) + b if c ∈ S(n)

kc if c /∈ S(n)
(3)

with parameters (a, b, f, θ, n, kc), for each c /∈ S(n), i.e., a

total of 5+C−|S(n)| parameters. The minimization of (2)

gives the parameters:

b =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i ≤ θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i ≤ θ)

, (4)

a + b =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i > θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i > θ)

, (5)

kc =

∑

i wc
i z

c
i

∑

i wc
i

c /∈ S(n) (6)

2

By adding a shared stump, the complexity of the multi-

class classifier increases with constant rate, independent of

the number of classes sharing the stump. Only the classes

that share the feature at round m will have a reduction of

their classification error.

For all the classes c in the set S(n), the function hm(v, c)
is a shared regression stump. For the classes that do not

share this feature (c /∈ S(n)), the function h(v, c) is a con-

stant kc different for each class. This constant prevents

sharing features due to the asymmetry between the number

of positive and negative samples for each class. However,

these constants do not contribute to the final classification.

Fig. 2 summarizes the algorithm.

As we do not know which is the best sharing S(n), in

principle we need to search over all 2C − 1 possible shar-

ing patterns at each iteration, to find the one that minimizes

Eq. (2). Obviously this would be very slow. Below, we dis-

cuss a greedy search heuristic that has complexity O(C2)
instead of O(2C).

2.2. Efficient computation of shared regression

stumps

Instead of searching among all possible 2C − 1 combina-

tions, we use best-first search and a forward selection pro-

cedure. This is similar to techniques used for feature selec-

tion but here we group classes instead of features (see [8]

for a review of feature selection techniques). We start by

computing the best feature for each leaf (single class), and

pick the class that maximally reduces the overall error. Then

we select the second class that has the best error reduction

jointly with the previously selected class. We iterate until

we have added all the classes. Finally we select from all

the sets we have examined the one that provides the largest

error reduction.

The complexity is quadratic in the number of classes, re-

quiring us to explore C(C + 1)/2 possible sharing patterns

instead of 2C − 1. We can improve the approximation by

using beam search considering at each step the best Nc < C
classes. However, we have found empiricially that the max-

imally greedy strategy (using Nc = 1) gives results which

are as good as exhaustive search.

To evaluate the quality of a node in the sharing graph,

we must find the optimal regression stump (using Equa-

tions 4, 5 and 6), which is slow. However, it turns out that

we can propagate most of the computations from the leaves

to higher nodes, as we now discuss. We start by comput-

ing the parameters a and b for a set of predefined thresholds

and for all features, so as to minimize the weighted square

error. Then, the parameters a and b for each threshold and

feature at any other internal node can be computed simply

as a weighted combination of the parameters at the leaves

that are connected with the node. The best regression pa-

1 2

3

Figure 3: Illustration of joint boosting (top row) and independent

boosting (bottom row) on a toy problem in which there are three

object classes and one background class. 50 samples from each

class are used for training, and we use 8 rounds of boosting. Left:

The thickness of the lines indicates the number of classes sharing

each regression stump. Right: whiter colors indicate that the class

is more likely to be present.

rameters for a subset of classes S is:

bS(f, θ) =

∑

c∈S bc(f, θ)w+
c (f, θ)

∑

c∈S w+
c (f, θ)

(7)

with w+
c (f, θ) =

∑N
i=1 wc

i δ(v
f
i > θ). Similarly for aS .

For each feature f , and each threshold θ, the joint weighted

regression error, for the set of classes S(n), is:

Jwse(n) = (1 − â2
s)

∑

c∈S(n)

w+
c + (1 − b2

s)
∑

c∈S(n)

w−

c +

+
∑

c/∈S(n)

N
∑

i=1

wc
i (z

c
i − kc)2 (8)

with âs = as + bs. The first two terms correspond to the

weighted error in the classes sharing a feature. The third

term is the error for the classes that do not share a feature

at this round. This can be used instead of Equation 2, for

speed.

2.3. Example of sharing on a toy problem

We compared joint boosting with independent boosting on a

toy data set, which consists of C spherical “clouds” of data

in D dimensions, embedded in a uniform “sea” of back-

ground distractors. Some results are shown in Figure 3.

This clearly illustrates the benefit of sharing features when

we can only afford to compute a small number (here, 8)

of stumps. In this case, the first shared function has the

form G123(v) =
∑3

m=1 h123
m (v), meaning that the classi-

fier which separates classes 1,2,3 vs. the background has

3 decision boundaries. The other nodes have the following

number of boundaries: M123 = 2, M12 = 2, M23 = 2,

M13 = 0, M1 = 1, M2 = 0, M3 = 1, so there are no pure

boundaries for class 2 in this example.

3

1 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

No sharing

Random sharing

Best pairs

Best sharing

Number of classes

N
u
m

b
er

 o
f

fe
at

u
re

s

Figure 4: Complexity of the multiclass classifier as a function of

the number of classes. The complexity of a classifier is evaluated

here as the number of stumps needed for achieving a predefined

level of performance (area under the ROC of 0.95).

Fig. 4 illustrates the dependency of the complexity of the

classifier as a function of the number of classes when using

different sharing patterns when the classifiers are required

to achieve the same level of performance. For this experi-

ments we use 2 dimensions, 25 training samples per class,

and 40,000 samples for the background. As expected, when

no sharing is used, the complexity grows linearly with the

number of classes. When sharing is only allowed between

pairs of classes, the complexity still grows linearly with the

number of classes. The same thing occurs with random

sharing, since, in 2D, random sharing will be good for at

least two classes at each round (and for D classes in D di-

mensions). However, when using the best sharing at each

round, the complexity drops dramatically, and the depen-

dency between complexity and number of classes follows a

logarithmic curve.

3. Multiclass object detection

Having described the joint boosting algorithm in general,

we now explain how to apply it to object detection.

3.1. Dictionary of features

In the study presented here we used 21 object categories1

(13 indoor objects: screen, keyboard, mouse, mouse pad,

speaker, computer, trash cans, poster, bottle, chair, can,

mug, light; 7 outdoor objects: frontal view car, side view

car, traffic light, stop sign, one way sign, do not enter sign;

and 2 objects that can occur indoors or outdoors: heads and

pedestrians).

1A labeled database of indoor and outdoor scenes, and

a extended version of this paper [20], are available at

http://web.mit.edu/torralba/www/multiclass.html

Figure 5: Each feature is composed of a template (image

patch on the left) and a binary spatial mask (on the right) in-

dicating the region in which the response will be averaged.

The patches vary in size from 4x4 pixels to 14x14.

Figure 6: Examples of correct detections of classifiers

trained jointly (screen, poster, cpu, car side, stop sign, mug).

For each image region of standardized size (32x32 pix-

els), we compute a feature vector of size 2000. The vector

of features computed at location x and scale σ is given by:

vf (x, σ) = (wf ∗ |Iσ ⊗ gf |
p)

1/p
(9)

where ⊗ represents the normalized correlation between the

image Iσ at scale σ and the filter gf , and ∗ represents the

convolution operator with spatial mask (window) wf (x).
The filters gf are generated by randomly extracting patches

from images of the 21 objects, after they where resized to

32x32 pixels. We generated a total of 2000 patches from

each class (see Fig. 5).

The exponent p allows us to generate different types of

features. For example, by setting p = 1, the feature vector

encodes the average of the filter responses, which are good

for describing textures. By setting p > 10, the feature vec-

tor becomes vf ≃ maxx∈Sw
{|Iσ ⊗ gf |}, where Sw(x) is

the support of the window for a feature at the location x.

This is good for template matching [21]. By changing the

spatial mask, we can change the size and location of the re-

gion in which the feature is evaluated. This provides a way

of generating features that are well localized (good for part-

based encoding and template matching) and features that

provide a global description of the patch (good for texture-

like objects).

4

70 features

20 tr. samples

15 features

20 tr. samples

15 features

2 tr. samples

S
cr

ee
n

C
h

ai
r

P
er

so
n

S
to

p
P

o
st

er

K
ey

b
o

ar
d

M
u

g
L

ig
h

t
C

ar
 f

ro
n

ta
l

B
o

tt
le

70 features

20 tr. samples

15 features

20 tr. samples

15 features

2 tr. samples

Figure 7: ROC curves for some of the 21 objects used (thin

(lower curve) = isolated detectors, thick (bottom curve) =

joint detectors). From left to right: i) 70 features in total (on

average 70/21 ≃ 3.3 features per object) and 20 training

samples per object, ii) 15 features and 20 training samples,

and iii) 15 features and 2 training samples.

For the experiment presented in this section we set p =
10, and we took the window wn to be localized within the

32x32 region near where the patch was extracted in the orig-

inal image, c.f., [21].

3.2. Results

For training we used a hand-labeled database of 2500 im-

ages. We trained a set of 21 detectors using joint and inde-

pendent boosting. In both cases, we limit the number of fea-

tures to be the same in order to compare performance for the

same computational cost. Each feature is defined by the pa-

rameters {a, b, θ, f}, where {a, b, θ} define the regression

stump and f specifies a mask, filter and power parameter

{wf(x), gf (x), pf},

Fig. 6 shows some sample detection results when run-

ning the detectors on whole images by scanning each loca-

tion and scale. Figure 7 summarizes the performances of

the detectors for each class. For the test set, we use an inde-

pendent set of images (images from the web, and taken with

a digital camera). All the detectors have better performance

when trained jointly, sometimes dramatically so.

By training the objects using joint boosting, at each

round we find which feature best reduces the total multiclass

classification error. Fig. 8 shows an example of a feature

shared between two objects at one of the boosting rounds.

The selected feature can help discriminate both trashcans

and heads against the background, as is shown by the dis-

tribution of positive and negative samples along the feature

dimension. As this feature reduces the error in two classes

at once, it has been chosen over other more specific features

that might have been performed better on a single class, but

0 20 40 60 80 100 120 140 160 180
0

1

ch
ai

r

0 20 40 60 80 100 120 140 160 180
0

1

ca
r

si
de

0 20 40 60 80 100 120 140 160 180
0

1

m
ou

se
pa

d

0 20 40 60 80 100 120 140 160 180
0

1

tr
as

h

0 20 40 60 80 100 120 140 160 180
0

1

he
ad

0 20 40 60 80 100 120 140 160 180
0

1

P
ed

es
tr

ia
n

0 20 40 60 80 100 120 140 160 180
0

1

on
e

w
ay

0 20 40 60 80 100 120 140 160 180
0

1

do
 n

ot
 e

nt
er

0 20 40 60 80 100 120 140 160 180
-1

0

1

F
ea

tu
re patch mask

regression stump

vf (arbitrary units)

Figure 8: Example of a shared feature between two objects

(heads and trash-cans) when training 8 objects jointly. The

shared feature is shown at the bottom of the figure. For each

object, the thin graph shows an empirical approximation to

p(vf |zc = 0), and the thick graph shows p(vf |zc = 1).

which would have resulted in worst performance when con-

sidering the multiclass loss function.

Fig. 9 shows the final set of features selected (the param-

eters of the regression stump are not shown) and the sharing

matrix that specifies how the different features are shared

across the 21 objects. Each column corresponds to one fea-

ture and each row shows the features used for each object.

A white entry in cell (i, j) means that object i uses feature

j. From left to right the features are sorted from generic fea-

tures (shared across many classes) to class-specific features

(shared among very few objects).

When training detectors jointly, the system will look

for features that generalize across multiple classes, such as

edges and other generic features (Fig. 9). Conversely, when

we train the detectors independently, the system learns

class-specific features, that look more like part-templates.

The disadvantage of class-specific features is that we can-

not afford to compute enough of them if we have a large

number of classes, since the features of each class have to

relearn object extraction functions common across classes.

3.3. Computational and sample complexity

One important consequence of feature sharing is that the

number of features needed grows sub-linearly with respect

to the number of classes. Fig. 10 shows the number of fea-

tures necessary to obtain a fixed performance as a function

5

screen
poster

car frontal
chair

keyboard
bottle

car side
mouse

mouse pad
can

trashcan
head

person
mug

speaker
traffic light

one way Sign
do not enter

stop Sign
light
cpu

Figure 9: Matrix that relates features to classifiers, which shows which features are shared among the different object classes. The features

are sorted from left to right from more generic (shared across many objects) to more specific. Each feature is defined by one filter, one

spatial mask and the parameters of the regression stump (not shown). These features were chosen from a pool of 2000 features in the first

40 rounds of boosting.

of the number of object classes to be detected. When using

C independent classifiers, the complexity grows linearly as

expected. However, when joint boosting is used, the com-

plexity is compatible with log(C). (A similar result has

been reported by Krempp, et. al ([9]) using character de-

tection as a test bed.) In fact, as more and more objects are

added, we can achieve good performance in all the object

classes even using fewer features than objects.

Another important consequence of joint training is that

the amount of training data required is reduced. Fig. 7

shows the ROC for the 21 objects trained with 20 sam-

ples per object, and also with only 2 samples per objects.

When reducing the amount of training, some of the detec-

tors trained in isolation perform worse than chance level

(which will be the diagonal on the ROC), which means that

the selected features were misleading. This is due to the

lack of training data, which hurts the isolated method more.

4. Multiview object detection

An important problem in object detection is to deal with the

large variability in appearances and poses that an object can

have in a scene. Most object detection algorithms deal with

the detection of one object under a particular point of view

(e.g., frontal faces). When building view invariant object

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

No sharing

joint Boosting

Number of object classes

N
u

m
b

er
 o

f
fe

at
u

re
s

Figure 10: Number of features needed in order to reach a

fix level of performance (area under the ROC equal to 0.9).

The results are averaged across 8 training sets. The error

bars show the variability between the different runs.

6

0 30 60 90 120 150 180 210 240 270 300 330

Figure 11: Examples of pose variations for cars and screens.

detectors, the standard approach is to discretize the space of

poses, and to implement a set of binary classifiers, each one

tuned to a particular pose (e.g., [18]).

Some objects have poses that look very similar. For in-

stance, in the case of a car, both frontal and back views have

many common features, and both detectors should share a

lot of computations. However, in the case of a computer

monitor, the front and back views are very different, and

we will not be able to share features. By sharing features

we can find a good trade-off between specificity of the clas-

sifier (training on very specific views) and computational

complexity (by sharing features between views).

One problem when discretizing the space of poses is to

decide how fine the discretization should be. The finer the

sampling, the more detectors we will need and hence the

larger the computational cost. However, when training the

detectors jointly, the computational cost does not blow up

in this way: if we sample too finely, then the sharing will

increase as the detectors become more and more correlated.

Fig. 12 shows the results of multiview car detectors and

compares the classifiers obtained using independent boost-

ing for each view and joint boosting. In both cases, we limit

the number of stumps to 70 and training is performed with

20 samples per view (12 views). Both classifiers have the

same computational cost. The top row shows typical de-

tection results obtained by combining 12 independent bi-

nary classifiers, each one trained to detect one specific view.

When the detection threshold is set to get 80% detection

rate, independent classifiers produce over 8 false alarms

per image on average, whereas the joint classifier results in

about 1 false alarm per image (averages obtained on 200 im-

ages not used for training). Test images were 128x128 pix-

els, which produced more than 17000 patches to be classi-

fied. The detector is trained on square regions of size 24x24

pixels. Fig. 13 summarizes the result showing the ROC for

both detectors.

5. Previous work

This paper builds on previous work in two separate commu-

nities, namely computer vision and machine learning. We

will discuss relevant papers from each in turn.

Fei-Fei, Fergus and Perona [5] propose a parts-based ob-

ject representation and impose a prior on the model param-

eters for each class, which encourages classes to be similar.

However, the parts themselves are not shared across classes.

a) No sharing between views.

b) Sharing between views.

Figure 12: View invariant car detection (dashed boxes are

false alarms, and solid boxes are correct detections). a) No

feature sharing, b) feature sharing. The joint training pro-

vides more robust classifiers with the same complexity.

0 0.05
0

0.5

1

Joint boosting

Independent

boosting

False alarms

D
et

ec
ti

o
n

 r
at

e

Figure 13: ROC for view invariant car detection.

Krempp, Geman and Amit [9] present a system that learns

to reuse parts for detecting several object categories. The

system is trained incrementally. They apply their system to

detecting overlapping characters. They show that the num-

ber of parts grows logarithmically with respect to the num-

ber of classes, which we also find. However, they do not

jointly optimize the shared features, and they have not ap-

plied their technique to real-world images.

In the machine learning community, Caruana [2] has

studied the problem of “multiple task learning”, but as far as

we know, this has never been applied to the object detection

task. A closer connection is to the general framework devel-

oped by Dietterich and Bakiri [3] for converting binary clas-

sifiers into multiple-class classifiers using error-correcting

output codes (ECOC). A difference between our approach

7

and the ECOC framework is how we use the subsets of clas-

sifiers. In ECOC, they classify an example by running each

set of classifiers, and look for the closest matching row in

the code matrix. As we saw in Section 2, in our algorithm,

we add the output of the individual subset classifiers to-

gether, as in a standard additive model. Allwein et. al.

[1] show that the popular one-against-all approach is often

suboptimal, but that the best code matrix to use is problem

dependent. Although our algorithm starts with a complete

code matrix, it learns which subsets are actually worth using

(Section 2).

6. Conclusion

We have introduced a new algorithm, joint boosting, for

jointly training multiple classifiers so that they share as

many features as possible. The result is a classifier that runs

faster (since it computes fewer features) and requires less

data to train (since it can share data across classes) than in-

dependently trained classifiers. In particular, the number

of features required to reach a fixed level of performance

grows sub-linearly with the number of classes (for the num-

ber of classes that we explored), as opposed to the linear

growth observed with independently trained classifiers.

We have applied the joint boosting algorithm to the prob-

lem of multi-class, multi-view object detection in clutter.

The jointly trained classifier significantly outperforms stan-

dard boosting (which is a state-of-the-art method for this

problem) when we control for computational cost (by en-

suring that both methods use the same number of features).

We believe the computation of shared features will be an

essential component of object recognition algorithms as we

scale up to large numbers of objects.

Acknowledgments

This work was sponsored in part by the Nippon Telegraph

and Telephone Corporation as part of the NTT/MIT Collab-

oration Agreement.

References

[1] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass

to binary: A unifying approach for margin classifiers. J. of

Machine Learning Research, pages 113–141, 2000.

[2] Rich Caruana. Multitask learning. Machine Learning,

28(1):41–75, 1997.

[3] T. G. Dietterich and G. Bakiri. Solving multiclass learning

problems via ECOCs. J. of AI Research, 2:263–286, 1995.

[4] S. Edelman and S. Duvdevani-Bar. A model of visual

recognition and categorization. Phil. Trans. Royal Soc. B,

352:1191–1202, 1997.

[5] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to

unsupervised one-shot learning of object categories. In IEEE

International Conference on Computer Vision (ICCV’03),

Nice, France, 2003.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic

regression: a statistical view of boosting. Technical report,

Dept. of Statistics, Stanford University, 1998.

[7] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic

regression: a statistical view of boosting. Annals of statistics,

38(2):337–374, 2000.

[8] R. Kohavi and G. H. John. Wrappers for feature subset se-

lection. Artificial Intelligence, 1.

[9] S. Krempp, D. Geman, and Y. Amit. Sequential learning

of reusable parts for object detection. Technical report, CS

Johns Hopkins, 2002.

[10] B. Leibe and B. Schiele. Analyzing appearance and contour

based methods for object categorization. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’03),

Madison, WI, June 2003.

[11] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical anal-

ysis of detection cascades of boosted classifiers for rapid ob-

ject detection. In DAGM, 2003.

[12] David G. Lowe. Object recognition from local scale-

invariant features. In Proc. of the International Conference

on Computer Vision ICCV, Corfu, pages 1150–1157, 1999.

[13] S. Mahamud, M. Hebert, and J. Shi. Object recognition using

boosted discriminants. In IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR’01), Hawaii, Dec. 2001.

[14] B. W. Mel. SEEMORE: Combining color, shape and texture

histogramming in a neurally-inspired approach to visual ob-

ject recognition. Neural Computation, 9(4):777–804, 1997.

[15] H. Murase and S. Nayar. Visual learning and recognition of

3-d objects from appearance. Intl. J. Computer Vision, 14:5–

24, 1995.

[16] C. Papageorgiou and T. Poggio. A trainable system for object

detection. Intl. J. Computer Vision, 38(1):15–33, 2000.

[17] R. Schapire. The boosting approach to machine learning: An

overview. In MSRI Workshop on Nonlinear Estimation and

Classification, 2001.

[18] Henry Schneiderman and Takeo Kanade. A statistical model

for 3D object detection applied to faces and cars. In Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[19] S.Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local

descriptors and neighborhood statistics for texture recogni-

tion. In Intl. Conf. on Computer Vision, 2003.

[20] A. Torralba, K. Murphy, and W. Freeman. Sharing visual

features for multiclass and multiview object detection. Tech-

nical report, CSAIL Technical report, MIT, 2004.

[21] M. Vidal-Naquet and S. Ullman. Object recognition with

informative features and linear classification. In IEEE Conf.

on Computer Vision and Pattern Recognition, 2003.

[22] P. Viola and M. Jones. Robust real-time object detection.

Intl. J. Computer Vision, 57(2):137–154, 2004.

8

