CS840a
Learning and Computer Vision
Prof. Olga Veksler

Lecture 2

Some Slides are from Cornelia,
Fermdiller,

Gary Bradski,
Sebastian Thrun

Last Time: Supervised Learning

= Training samples (or examples) X',X2,...X"
= Each example is typically multi-dimensional
= Xy, X, ..., Xiy are typically called features, X' is sometimes
caIIed a feature vector
= How many features and which features do we take?
= Know desired output for each example (labeled
samples) Y',Y2,...Y"
= This learning is supervised (“teacher” gives desired outputs).
= Yiare often one-dimensional, but can be multidimensional

= Two types of supervised learning:
= Classification:
= Yi takes value in finite set and typically called a label or a class
= Example: Y e{sunny,cloudy,raining}
= Regression, or function fitting:
= Yi continuous. In this case, it is typically called an output value
= Example: Y=temperature €[-60,60]

Today

Last Time: Supervised Learning

Finish nearest neighbors
Linear Machines

Start preparation for the first paper

= “Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= there should be a link to PDF file on our web site
Next time:

= Discuss the paper and watch video

= Prepare for the second paper

= Wish to design a machine f(X,W) s.t
f(X,W) = true output value at X
= |n classification want f(X,W) = label of X

= How do we choose ?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W = [wy,Wo,... W]




Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set
= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Y' “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Generalization and Overfitting

= Generalization is the ability to produce correct output
on previously unseen examples
= In other words, low error (loss) on unseen examples
= Good generalization is the main goal of ML
= Low train error does not necessarily imply that we will
have low test error
= Very easy to produce f(X,W) which is perfect on training
samples
= “memorize” all the training samples and output their correct label
= random label on unseen examples
= No training error but horrible test error
= Qverfitting
= when the machine performs well on training data but poorly
on testing data

Testing

= Testing phase

= The goal is to design machine which performs well
on unseen examples (which are typically different
from labeled examples)

= Evaluate the performance of the trained machine
f(X,W) on the testing samples (unseen labeled
samples)

= Testing the machine on unseen labeled examples
lets us approximate how well it will perform in
practice

= |f testing results are poor, may have to go back to
the training phase and redesign f(X,W)

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

= f(X,W) has to be “close” to the true output on X

= Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X!,Y,W)
= Some examples:
= for classification, L(X\,Y,W) = I[f(Xi,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X\,Y,W) =|| f(Xi,W) -Yi |2,
= how far is the estimated output from the correct one?
= Then loss function L = ¥, L(X,Y,W)
= Number of missclassified example for classification
= Sum of distances from the estimated output to the correct
output




Linear Machine, Continuous Y

= W, is called bias
= |n vector form, if we let
X'=(1,X1,Xy,...,Xg), then
f(X,W) = WTX
= notice abuse of notation, | made
X=[1X]
= This is standard linear
regression (line fitting)

= assume
LOXLYLW) = || H(XW) -V |2
= optimal W can be found by
solving linear system of

equations W* = [ZXI (X))T]1 £YiXi

Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(X,Y,W) = I[f(X|,W) # Yi]. How do we learn W?
= A solution:
= lterate over all training samples

= if f(X,W)=Y (correct label), do nothing

= else W =W + [Y-f(WTX)IX

before after

Linear Machine: binary Y

= sign(positive) = 1, \

sign(negative) = -1
= w, is called bias
= |n vector form, if we let
X = (1,X4,Xs,-..,Xg) then
f(X,W) = sign(WTX)

decision boundary WX = 0

WX<0 X

/

Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
= |s there a way to learn W in non-separable case?

= Remember, it's ok to have training error, so we don’'t have
to have “perfect” classification




Optimization

= Need to minimize a function of many variables
J(x) = (X5 X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

2] gradient
oXx, )

N =vJ(x)=0
—J
ax, (x)

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+e% =0
{cos(xf +x3)+ Iog(xj )"f =0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

J(x) -vJ(x)

s s
X x2 x@  x®

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 7% VJ(X(k))‘ >&

choose learning rate p®)
xtk+ 1= X6 — 1 ) 7 ()
k=k+1

(update rule)

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease

one dimension two dimensions
400
_daJ (a) 200
J(x) dx . ~vJ(a)
200 \
-400
10
0 [ ] 5
- 0
. g 40 -0 a
a X
_aJ
@
a

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

L d —>

x\) x@ x©3 x(k) global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function




Optimization: Gradient Descent

= Main issue: how to set parameter n (learning rate )
= If pis too small, need too many iterations

J(x)

X

X
Bintiatiatiotintion >
J(x)
= |f is too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting) } 5
x(1 X2

“Optimal” W with Gradient Descent

= Better choice:
Lw)= Y (wx')y’

X'em

Xe 2
= |If X7is misclassified, (WTX)Yi<0 *
= Thus L(W,X\Y) >0 =
= L(W,X\,Yi) is proportional
to the distance of
misclassified example to
the decision boundary L(W)

= L(W)=EL(W,Xi,Yi) is

piecewise linear and thus ‘\ /

suitable for gradient decent f w

“Optimal” W with Gradient Descent

| |
x
Z
1]
@
«Q
2
=
S
+
™
I
IS
a
=
X

If we let L(XLYL, W) = I[f(Xi,W) = Y7, then L(W) is the
number of missclassified examples

Let M be the set of examples misclassified by W
MW)={sample X' s.t. W X' Y’}

Then L(W) = [M(W)], the size of M(W)

t M(W)

= L(W) is piecewise constant,
gradient descent is useless

<1

Batch Rule
Lw,x',y')= 3 (wrx)y

XeM

= Gradientof Lis VL(W)= Y (- X)Y
XeM
= M are samples misclassified by W

= ltis not possible to solve VL(W) =0 analytically
= Update rule for gradient descent: xtk+1)= x®—g &) v y(x)

= Thus gradient decent batch update rule for L(W) is:
wk+) — ) 4 ,’(k) Z XY

YeM
= |tis called batch rule because it is based on all

misclassified examples




Single Sample Rule

= Thus gradient decent single sample rule for L(W) is:
Wk — ) 4 ”(k)(xy)

= apply for any sample X misclassified by WK
= must have a consistent way of visiting samples

Learning by Gradient Descent

= Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

Pick differentiable per-sample loss function L(X,Y\,W)
= We need to find W that minimizes L = ¥; L(X1,Y,W)

= Use gradient-based minimization:

= Batch rule: W = W - nVL(W)

= Or single sample rule: W = W - n' VL (X,Yi,W)

Convergence

= If classes are linearly separable, and 7 is fixed to a
constant, i.e. p =p@=...=p®=c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any Win the solution space)

= |f classes are not linearly separable:

= Single sample algorithm does not stop, it keeps looking for
solution which does not exist

= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

750 as k— o

= for example, ) 77(‘)
=y

= for this learning rate convergence in the linearly separable
case can also be proven

Important Questions

= How do we choose the feature vector X?

= How do we split labeled samples into training/testing
sets?

= How do we choose the machine f(X,W)?
= How do we choose the loss function L(X{,Yi,W)?
= How do we find the optimal weights W?




Background Preparation for Paper

= Paper:“Recognizing Action at a Distance” by A. Efros,

A.Berg, G. Mori, Jitendra Malik
= Optical Flow Field (related to motion field)
= Correlation

Optical Flow Field

Optical flow
e ., ° .
= e
first image I, second image |,

= How to estimate pixel motion from image I, to image I,?

= Solve pixel correspondence problem

= given a pixel in I,, look for nearby pixels of the same
colorin I,
= Key assumptions

= color constancy: a point in I, looks the same in I,

= For grayscale images, this is brightness
constancy

= small motion: points do not move very far
= This is called the optical flow problem

Optical Flow and Motion Field

= Optical flow field is the apparent motion of
brightness patterns between 2 (or several) frames
in an image sequence

= Why does brightness change between frames?

= Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene




Motion Field (MF)

= The MF assigns a velocity vector to each pixel in
the image

= These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

= The MF is the projection of the 3D velocities on
the image plane

Optical Flow vs. Motion Field

= Recall that Optical Flow is the apparent motion of
brightness patterns
= We equate Optical Flow Field with Motion Field
= Frequently works, but now always:
(a) A smooth sphere is rotating

o N, under constant illumination.

Lr EOTEE O Thus the optical flow field is

' j m & zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image

(a) (b) changes. Thus the motion

field is zero, but the optical

flow field is not

Examples of Motion Fields

Y tog —
\\\ /’// / ‘/\‘\\
N~ s
R Ee- o }J
P NN \\ \\: =
AN %
) ~.
(a) (b)

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Optical Flow vs. Motion Field

= Often (but not always) optical flow corresponds to the
true motion of the scene

Z axis

YT
TYITITII
I 1

iy
st
it
st

i)

Gptical flow

Barber's pole Motion ficld




Computing Optical Flow: Brightness
Constancy Equation

Computing Optical Flow: Brightness
Constancy Equation

= Let P be a moving point in 3D:
= Attime t, P has coords (X(t),Y(t),Z(t))
= Let p=(x(t),y(t)) be the coords. of its image at
time t

= Let E(x(t),y(t),t) be the brightness at p at time t.

= Brightness Constancy Assumption:
= As P moves over time, E(x(t),y(t),t) remains
constant

1 equation with 2 unknowns

0Edx | OEdy  OF _

drdt | Oydt ' Ot

Let
oK (Frame spatial gradient)
VE=| 8¢
Jy
dx .
| T (optical flow)
dt
and B = oK (derivative across frames)
ot

Computing Optical Flow: Brightness
Constancy Equation

E(x(t),y(t),t) = Constant

Taking derivative wrt time:

dE(x(t),y(t),t) _ 0
dt o

OBdr | 0Bdy 0B _

Ordt ' Oydt ' Ot

Computing Optical Flow: Brightness
Constancy Equation

= How to get more equations for a pixel?
= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally
= one method: pretend the pixel's neighbors have the same (u,v)
= If we use a 5x5 window, that gives us 25 equations per pixel!

0= Ii(p;) + VI(p;) - [u v]

I(p1) Iy(p1) Ii(p1)

Ix(Pz) Iy(Pz) | _ ft(Pz)

Lo(p2s) Iy(pas) Ii(pss)
A d b

25x2 2x1 25x1




Video Sequence

Revisiting the small motion assumption

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

= |s this motion small enough?

= Probably not—it's much larger than one pixel (2"
order terms dominate)

= How might we solve this problem?

Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
mation

Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

10



Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=10 pixels,.r"’

Gaussian pyramid of image I

Gaussian pyramid of image H

Coarse-to-fine optical flow estimation

— run iterative L-K — 4

lwarp & upsample

- —> run Iteratlve L-K +— -

Gaussian pyramid of image H Gaussian pyramid of image I

Iterative Refinement

= [terative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

11



from Gary Bradski and Sebastian Thrun

Other Concepts to Review

= Cross-correlation d

olf.g)=2,1(i)g(i)

. medasures similarity between images (or image regions) f
and g

= works OK if there is no change in intensity

= Normalized cross correlation, more
popular in image processing

= Insensitive to linear intensity changes &
between image patches f and g N

9
() -FXa(1)-9) $
NCC(f,g)= = -
[;(f(i)—f)zg(g(i)-a)}

Other Concepts to Review

= Image gradient: points in the direction of the most
rapid change in intensity of image f

I_Yf=[3¢,o} _l_[ , Kwﬂ%.%ﬂ
V=05

= Sobel operator to compute gradient:

1]o1 11211
2[o|2 olofo
1lo1 1]-2]-
of of
ox @

Other Concepts to Review

= Convolution is the operation of applying a “kernel” to each pixel
of an image

image
HIVRR PRI R FEIRATAR FEID STAR FRAR FEIR AT
T21|T22| X23| D2a | X25| Xa6| D27 | Ias| L2 H’ﬂi
KuKizK
Tar | Tz | Tas| as | Tas| Yoo | Tar| Tag| Lo o
Ka[Kzz[K s
Lay|Luz|Laz| Laa | Xas|Xas | La7 | Tas| Lo

Isy|Isz|Is3| Isa|Xss|Xss|Is7| Iss| Iss
Tor|Xoz|Xo3| Loa|Xos| Xos|Lo7|Yes| Lso

= Result of convolution has the same dimension as the image

= For example:
Ogr = Igg K+ Tis K+ IngKg + Jgr Ko +Tog Koo + g Kug
= Convolution is frequently denoted by *, for example I"K

12



Other Concepts to Review

= Gaussian smoothing (blurring): convolution operator that is used to
“blur' images and removes small detail and noise from an image

4 16| 26| 16| 4

—- | 7|26 41| 26| 7

4 | 16| 26| 16| 4

Next Time

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik
= When reading the paper, think about following:
= Your discussion should have the following:
= very short description of the problem paper tries to solve
= What makes this problem difficult?

= Short description of the method used in the paper to
solve the problem

= What is the contribution of the paper (what new does it
do)?

= Do the experimental results look “good” to you?

Gaussian vs. Smoothing

Smoothing by Averaging

1 a4l 1(1(1(1(1
4|18 28|18 4 1 11111

L7 e et ]| 7 =t
273 1(1(1(1(1
25 (11Tt
4|16 26[ 16| 4 AFIEIERE

1 4 7 4 1

11111

13



