
1

CS840a
Learning and Computer Vision

Prof. Olga Veksler

Lecture 2
Some Slides are from Cornelia,

Fermüller, Mubarak Shah,
Gary Bradski,

Sebastian Thrun

Today

� Finish nearest neighbors
� Linear Machines
� Start preparation for the first paper

� “Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

� there should be a link to PDF file on our web site

� Next time:
� Discuss the paper and watch video
� Prepare for the second paper

Last Time: Supervised Learning
� Training samples (or examples) X1,X2,…Xn

� Each example is typically multi-dimensional
� Xi

1, Xi
2 ,…, Xi

d are typically called features, Xi is sometimes
called a feature vector

� How many features and which features do we take?
� Know desired output for each example (labeled

samples) Y1,Y2,…Yn

� This learning is supervised (“teacher” gives desired outputs).
� Yi are often one-dimensional, but can be multidimensional

� Two types of supervised learning:
� Classification:

� Yi takes value in finite set and typically called a label or a class
� Example: Y ∈{sunny,cloudy,raining}

� Regression, or function fitting:
� Yi continuous. In this case, it is typically called an output value
� Example: Y=temperature ∈[-60,60]

Last Time: Supervised Learning

� Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
� In classification want f(X,W) = label of X
� How do we choose f?

� when we choose a particular f, we are making implicit
assumptions about our problem

� W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
� W = [w1,w2,…wk]

2

Training and Testing
� There are 2 phases, training and testing

� Divide all labeled samples X1,X2,…Xn into 2 sets,
training set and testing set

� Training phase is for “teaching” our machine
(finding optimal weights W)

� Testing phase is for evaluating how well our
machine works on unseen examples

� Training phase
� Find the weights W s.t. f(Xi,W) = Yi “as much as

possible” for the training samples Xi

� “as much as possible” needs to be defined
� Training can be quite complex and time-consuming

Testing
� Testing phase

� The goal is to design machine which performs well
on unseen examples (which are typically different
from labeled examples)

� Evaluate the performance of the trained machine
f(X,W) on the testing samples (unseen labeled
samples)

� Testing the machine on unseen labeled examples
lets us approximate how well it will perform in
practice

� If testing results are poor, may have to go back to
the training phase and redesign f(X,W)

Generalization and Overfitting
� Generalization is the ability to produce correct output

on previously unseen examples
� In other words, low error (loss) on unseen examples
� Good generalization is the main goal of ML

� Low train error does not necessarily imply that we will
have low test error
� Very easy to produce f(X,W) which is perfect on training

samples
� “memorize” all the training samples and output their correct label
� random label on unseen examples
� No training error but horrible test error

� Overfitting
� when the machine performs well on training data but poorly

on testing data

Loss Function
� How do we quantify what it means for the machine

f(X,W) do well in the training and testing phases?
� f(X,W) has to be “close” to the true output on X
� Define Loss (or Error) function L

� This is up to the designer (that is you)
� Typically first define per-sample loss L(Xi,Yi,W)

� Some examples:
� for classification, L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi],

where I[true] = 1, I[false] = 0
� we just care if the sample has been classified correctly

� For continuous Y, L(Xi,Yi,W) =|| f(Xi,W) -Yi ||2 ,
� how far is the estimated output from the correct one?

� Then loss function L = Σi L(Xi,Yi,W)
� Number of missclassified example for classification
� Sum of distances from the estimated output to the correct

output

3

Linear Machine, Continuous Y
� f(X,W) = w0+Σi=1,2,...d wixi

x

y� w0 is called bias

� In vector form, if we let
X = (1,x1,x2,…,xd), then
f(X,W) = WTX
� notice abuse of notation, I made

X=[1 X]

� This is standard linear
regression (line fitting)
� assume

L(Xi,Yi,W) = || f(Xi,W) -Yi ||2
� optimal W can be found by

solving linear system of
equations W* = [ΣXi (Xi)T]-1 ΣYiXi

Linear Machine: binary Y
� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� sign(positive) = 1,
sign(negative) = -1

� w0 is called bias

� In vector form, if we let
X = (1,x1,x2,…,xd) then
f(X,W) = sign(WTX)

WTX < 0

WTX > 0

x1

x2

decision boundary WTX = 0

W

Perceptron Learning Procedure (Rosenblatt 1957)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� Let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi]. How do we learn W?
� A solution:
� Iterate over all training samples

� if f(X,W)=Y (correct label), do nothing
� else W = W + [Y-f(WTX)]X

X

W

before

X

W

after

Perceptron Learning Procedure (Rosenblatt 1957)

� Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

� Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

� For most interesting problems the samples are not
linearly separable

� Is there a way to learn W in non-separable case?
� Remember, it’s ok to have training error, so we don’t have

to have “perfect” classification

4

Optimization
� Need to minimize a function of many variables

(((()))) (((())))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero

(((())))

(((())))
(((()))) 0

1
====∇∇∇∇====

����
����
����
����
����

����

����

����
����
����
����
����

����

����

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

xJ

xJ
x

xJ
x

d

�

� However solving analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient

(((())))
(((()))) (((())))��������

����
				

====++++++++

====++++++++

0xlogxxcos

0exxsin
2
4

5

2
4

x33
2

2
1

x3
2

2
1

� Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent
� Gradient points in direction of steepest increase of

J(x), and in direction of steepest decrease
(((())))xJ∇∇∇∇

a

(((())))a
dx
dJ−−−−J(x)

x

one dimension two dimensions

(((())))aJ∇∇∇∇−−−−

a

a

(((())))a
dx
dJ−−−−

a

(((())))a
dx
dJ−−−−

(((())))xJ∇∇∇∇−−−−

Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((())))(((())))2xJ∇∇∇∇−−−−

(((()))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((())))(((()))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1 and x(1) to some initial guess for the weight vector
while (((()))) (((())))(((()))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k) (update rule)(((())))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1

Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function

x((((1) x((((2) x((((3) x((((k)

5

Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate)
� If ηηηη is too small, need too many iterations

� If ηηηη is too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

J(x)

x

“Optimal” W with Gradient Descent

� Then L(W) = |M(W)|, the size of M(W)

� Let M be the set of examples misclassified by W
(((()))) {{{{ }}}}iiTi YXWtsXsampleWM ≠≠≠≠==== ..

� L(W) is piecewise constant,
gradient descent is useless

W

M(W)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)
� If we let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi], then L(W) is the

number of missclassified examples

“Optimal” W with Gradient Descent

� Better choice:
(((()))) (((())))����

∈∈∈∈

−−−−====
MX

iiT

i

YXWWL

� L(W,Xi,Yi) is proportional
to the distance of
misclassified example to
the decision boundary

W
W

TX
/ ||W

||

X
� If Xi is misclassified, (WTXi)Yi ≤ 0

� Thus L(W,Xi,Yi) ≥ 0

W

L(W)

� L(W)=ΣL(W,Xi,Yi) is
piecewise linear and thus
suitable for gradient decent

Batch Rule

� Gradient of L is (((()))) (((())))YXWL
MX
����

∈∈∈∈
−−−−====∇∇∇∇

� Thus gradient decent batch update rule for L(W) is:
(((()))) (((()))) (((())))����

∈∈∈∈

++++ ++++====
MY

kkk XYWW ηηηη1

� It is called batch rule because it is based on all
misclassified examples

� M are samples misclassified by W
� It is not possible to solve �L(W) = 0 analytically

(((())))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)

(((()))) (((())))����
∈∈∈∈

−−−−====
MX

Tii YXWYXWL ,,

6

Single Sample Rule

� Thus gradient decent single sample rule for L(W) is:

� apply for any sample X misclassified by W(k)

� must have a consistent way of visiting samples

(((()))) (((()))) (((()))) (((())))XYWW kkk ηηηη++++====++++1

Convergence
� If classes are linearly separable, and ηηηη((((k)))) is fixed to a

constant, i.e. ηηηη((((1)))) =ηηηη((((2)))) =…=ηηηη((((k)))) =c (fixed learning rate)
� both single sample and batch rules converge to a correct

solution (could be any W in the solution space)
� If classes are not linearly separable:

� Single sample algorithm does not stop, it keeps looking for
solution which does not exist

� However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

(((()))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example, (((())))
(((())))

k
k

1ηηηηηηηη ====
� for this learning rate convergence in the linearly separable

case can also be proven

Learning by Gradient Descent

� Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

� Pick differentiable per-sample loss function L(Xi,Yi,W)
� We need to find W that minimizes L = Σi L(Xi,Yi,W)
� Use gradient-based minimization:

� Batch rule: W = W - η�L(W)
� Or single sample rule: W = W - η�L (Xi,Yi,W)

Important Questions

� How do we choose the feature vector X?
� How do we split labeled samples into training/testing

sets?
� How do we choose the machine f(X,W)?
� How do we choose the loss function L(Xi,Yi,W)?
� How do we find the optimal weights W?

7

Background Preparation for Paper

� Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik
� Optical Flow Field (related to motion field)
� Correlation

Optical flow

� How to estimate pixel motion from image I1 to image I2 ?
� Solve pixel correspondence problem

� given a pixel in I1 , look for nearby pixels of the same
color in I2

� Key assumptions
� color constancy: a point in I1 looks the same in I2

� For grayscale images, this is brightness
constancy

� small motion: points do not move very far
� This is called the optical flow problem

first image I1 second image I2

Optical Flow Field

� Optical flow field is the apparent motion of
brightness patterns between 2 (or several) frames
in an image sequence

� Why does brightness change between frames?
� Assuming that illumination does not change:

� changes are due to the RELATIVE MOTION between
the scene and the camera

� There are 3 possibilities:
� Camera still, moving scene
� Moving camera, still scene
� Moving camera, moving scene

Optical Flow and Motion Field

8

Motion Field (MF)

� The MF assigns a velocity vector to each pixel in
the image

� These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

� The MF is the projection of the 3D velocities on
the image plane

Examples of Motion Fields

(a) (b)

(c) (d)

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Optical Flow vs. Motion Field

(a) (b)

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image
changes. Thus the motion
field is zero, but the optical
flow field is not

� Recall that Optical Flow is the apparent motion of
brightness patterns
� We equate Optical Flow Field with Motion Field
� Frequently works, but now always:

Optical Flow vs. Motion Field

� Often (but not always) optical flow corresponds to the
true motion of the scene

9

Computing Optical Flow: Brightness
Constancy Equation

� Let P be a moving point in 3D:
� At time t, P has coords (X(t),Y(t),Z(t))
� Let p=(x(t),y(t)) be the coords. of its image at

time t
� Let E(x(t),y(t),t) be the brightness at p at time t.

� Brightness Constancy Assumption:
� As P moves over time, E(x(t),y(t),t) remains

constant

Computing Optical Flow: Brightness
Constancy Equation

��������	
������	���������	
������	�

��

����� 	���� 	�

Computing Optical Flow: Brightness
Constancy Equation

�	��	�
��
�� 	����������
���	�����
�� 	����������
���	���

������������
 �������������
 �

������ ��	
������	���
�����
�� 	����	
������	���
�����
�� 	��

1 equation with 2 unknowns

Computing Optical Flow: Brightness
Constancy Equation

� How to get more equations for a pixel?
� Basic idea: impose additional constraints

� most common is to assume that the flow field is smooth locally
� one method: pretend the pixel’s neighbors have the same (u,v)

� If we use a 5x5 window, that gives us 25 equations per pixel!

10

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Revisiting the small motion assumption

� Is this motion small enough?
� Probably not—it’s much larger than one pixel (2nd

order terms dominate)
� How might we solve this problem?

Reduce the resolution!

11

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

Iterative Refinement

� Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

12

Human Motion SystemHuman Motion System
Illusory SnakesIllusory Snakes

from Gary from Gary BradskiBradski and Sebastian and Sebastian ThrunThrun

Other Concepts to Review

� Image gradient: points in the direction of the most
rapid change in intensity of image f

10-1
20-2
10-1

-1-2-1
000
121

� Sobel operator to compute gradient:

x
f

∂∂∂∂
∂∂∂∂

y
f

∂∂∂∂
∂∂∂∂

Other Concepts to Review

� Cross-correlation

� measures similarity between images (or image regions) f
and g

� works OK if there is no change in intensity

(((()))) (((()))) (((())))����
====

====
d

1i

igifg,fc

la
rg

e
si

m
ila

rit
y

sm
all sim

ilarity

(((())))
(((())))(((()))) (((())))(((())))

(((())))(((()))) (((())))(((())))
2/1d

1i

d

1k

22

d

1i

gigfif

gigfif
g,fNCC

����
����

����
����
����

���� −−−−−−−−

−−−−−−−−
====

���� ����

����

==== ====

====

� Normalized cross correlation, more
popular in image processing
� Insensitive to linear intensity changes

between image patches f and g

Other Concepts to Review
� Convolution is the operation of applying a “kernel” to each pixel

of an image

� Result of convolution has the same dimension as the image
� For example:

image

kernel

� Convolution is frequently denoted by *, for example I*K

13

Other Concepts to Review
� Gaussian smoothing (blurring): convolution operator that is used to

`blur' images and removes small detail and noise from an image

* =

Gaussian vs. Smoothing

Gaussian Smoothing Smoothing by Averaging

25
1

11111

11111

11111

11111

11111

Next Time

� Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

� When reading the paper, think about following:
� Your discussion should have the following:

� very short description of the problem paper tries to solve
� What makes this problem difficult?
� Short description of the method used in the paper to

solve the problem
� What is the contribution of the paper (what new does it

do)?
� Do the experimental results look “good” to you?

